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Question 1. Parts (a)-(e) of this question are about a Markov chain (X0, X1, X2, . . .)
with state space {1, 2, 3, 4, 5} and transition matrix

P =


0 1 0 0 0
1
2 0 1

2 0 0

0 1
2 0 1

2 0

0 0 1
2 0 1

2

0 0 0 1 0

 ,

where as usual, the ith row (and the ith column) of P corresponds to state i, for
each i ∈ {1, 2, 3, 4, 5}.

(a) Is the Markov chain (X0, X1, X2, . . .) irreducible? Justify your answer. [3]

(b) Is it regular? Justify your answer. [3]

(c) Find an invariant distribution for the Markov chain. [4]

(d) State whether or not the invariant distribution you found in part (d) is the
unique invariant distribution. [1]

(e) Does the Markov chain have a limiting distribution? Justify your answer. [3]

Parts (f)-(i) of this question are about a Markov chain (Y0, Y1, Y2, . . .) with state
space {1, 2, 3, 4, 5} and transition matrix

P =


0 1 0 0 0
1
3

1
3

1
3 0 0

0 1
2 0 1

2 0

0 0 1
2 0 1

2

0 0 0 1 0

 .

(f) Give an argument to show that the Markov chain (Y0, Y1, Y2, . . .) is regular. [3]

(g) Find an invariant distribution for the Markov chain. [5]

(h) State whether or not the invariant distribution you found in part (h) is the
unique invariant distribution. [1]

(i) Does the Markov chain have a limiting distribution? If so, what is it? [2]
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Question 2. (a) Define what it means for a state to be an absorbing state of a
Markov chain. [2]

Parts (b)-(d) of this question are about a Markov chain (X0, X1, X2, . . .) with state
space {1, 2, 3, 4, 5}, and transition matrix

P =


1 0 0 0 0
1
2 0 1

2 0 0

0 1
3

1
2

1
6 0

0 0 2
3 0 1

3

0 0 0 0 1

 .

(b) List the absorbing states of the Markov chain (X0, X1, X2, . . .). [1]

(c) Using the method of ‘conditioning on the first step’, or otherwise, find the
probability that the Markov chain is eventually absorbed in state 1, given that
X0 = 2. Show your working. [6]

(d) Using part (c), or otherwise, write down the probability that the Markov chain
is eventually absorbed in state 6, given that X0 = 2. [2]

Parts (e)-(h) of this question are about a game. I play this game as follows. I
start with a bucket containing eight balls: four green balls, three red balls and one
yellow ball. Every minute, I put my hand into the bucket and I pick out one of the
remaining balls at random (each ball is chosen with the same probability). If it is
green, I put it back in the bucket, but if it is red or yellow, I keep it. The game
ends either when I have picked out all three of the red balls, or when I have picked
out the yellow ball. If I pick out all three of the red balls before I have picked out
the yellow ball, then I win the game, but if I pick out the yellow ball before I have
picked out all three of the red balls, then I lose the game.

(e) This game can be modelled as a Markov chain with five states (where two of the
states are absorbing states). Write down what these five states are. (In other
words, write down which physical situations each of the five states corresponds
to.) [3]

(f) Draw a transition graph for this Markov chain. [3]

(g) Write down a transition matrix for this Markov chain. (Indicate clearly which
rows of the matrix correspond to which states.) [2]

(h) By the method of conditioning on the first step, or otherwise, find the expected
length of time until the game ends. Show your working. [6]
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Question 3. Parts (a)-(d) of this question are about a general Markov chain (X0, X1, X2, . . .)
with state space S.

(a) Define what it means for a state i ∈ S to be recurrent, in terms of the return
probability fi. [2]

(b) State a condition, in terms of the t-step transition probabilities p
(t)
i,i alone,

which is equivalent to the state i being recurrent. [2]

(c) Define what it means for two states i, j ∈ S to intercommunicate (i ↔ j), in
terms of probabilities. [2]

(d) Using part (b), or otherwise, show that if two states i, j ∈ S intercommunicate,
then i is recurrent if and only if j is recurrent. [5]

Parts (e)-(i) of this question are about a Markov chain (Y0, Y1, Y2, . . .) with state
space {1, 2, 3, 4, 5} and transition matrix

P =


0 1

2
1
2 0 0

1
3

1
3 0 1

6
1
6

0 0 1
3

2
3 0

0 0 1
3

2
3 0

0 0 0 0 1

 .

(e) Draw a transition graph for this Markov chain. [2]

(f) Give a formula for f
(t)
3 (the probability that the first return to the state 3 is

at time t, given that we start in state 3), in terms of t. Hence, or otherwise,
show that the state 3 is recurrent. [4]

(g) Show that the state 1 is transient. [3]

(h) List the communicating classes of the Markov chain. [3]

(i) For each of the five states of the Markov chain, write down whether that state
is recurrent or transient. [2]
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Question 4. (a) Let (X(t) : t ≥ 0) be a continuous-time stochastic process, and
let λ > 0. Define what it means for (X(t) : t ≥ 0) to be a Poisson process
with rate λ. [5]

Parts (b)-(g) of this question are about an experiment with a particle detector,
which is switched on at time 0, and then left on forever. Alpha particles arrive at
the detector according to a Poisson process with rate 2 per hour. Beta particles
arrive at the detector according to an independent Poisson process with rate 1 per
hour. Your answers to parts (b)-(g) should be expressed in terms of powers of e
(where necessary), but they should be simplified in all other ways.

(b) What is the probability that exactly 3 alpha particles arrive at the detector in
the first hour of the experiment? [3]

(c) What is the probability that the total number of particles (alpha particles plus
beta particles) which arrive in the first hour, is 3? [4]

(d) Given that exactly 3 alpha particles arrive during the first hour, what is the
probability that at least one alpha particle arrives during the second hour? [3]

(e) Given that exactly 3 alpha particles arrive during the first hour, what is the
probability that exactly 2 alpha particles arrived during the first 30 minutes? [3]

(f) Given that exactly 3 alpha particles and exactly 2 beta particles arrive during
the first hour, what is the probability that more beta particles than alpha
particles arrived during the first 30 minutes? [4]

(g) Given that exactly one alpha particle arrived in the first thirty minutes, what
is the probability that it actually arrived in the first five minutes? [3]

End of Paper.
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