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Question 1 (20 marks). (a) State and prove the Steinitz Exchange Lemma. You
may use (without proof) the fact that a homogeneous system of linear equations
over a field with more variables than equations has a non-zero solution.

[10]

(b) Let V be a vector space with a finite spanning set over the field K.

(i) Show that V has a basis. [3]

(ii) Prove that any two bases of V have the same number of elements. [4]

(iii) Define the dimension of V . Explain carefully why this definition makes sense. [3]

Question 2 (20 marks). Let K and L be two fields such that K ⊆ L (think for in-
stance of the pair Q ⊆ R). In this situation, L may be viewed as a vector space over
the field K, with vector addition given by addition in L and scalar multiplication
being defined via the multiplication in L. Denote by

[L : K] = dimKL

the dimension of L as a vector space over K.

(a) Let K,L,M be three fields such that K ⊆ L ⊆ M , and suppose that [L : K]
and [M : L] are both finite. Show that in this situation

[M : K] = [L : K] · [M : L].

Hint: Write down a basis for the space L over the field K, and one for the space M
over the field L, Then form all [L : K] · [M : L] products in the field M with the
first factor coming from the first basis, and the second factor taken from the second
basis. Show that these products form a basis for M over K. [10]

(b) Let K,L be two fields such that K ⊆ L, and consider L as a vector space over
K, as defined above. Show that multiplication by a fixed element λ ∈ L defines a
linear map Tλ : L→ L, x 7→ λx. For which λ is Tλ invertible?

[8]

(c) Compute [C : R] by exhibiting a basis for C over R.
[2]
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Question 3 (20 marks). Let V be a vector space of finite dimension n over the field
K, let m ≥ 1 be an integer, and let {e1, e2, . . . , en} be a basis of V .

(a) Define the concept of a linear m-form on V .
[3]

(b) When is a linear m-form on V called alternating?
[2]

(c) Show that an alternating m-form Fa on V changes sign when two of its argu-
ments are interchanged. Deduce that

Fa(eπ(j1), . . . , eπ(jm)) = sgn(π)Fa(ej1 , . . . , ejm), (1)

where π ∈ Sym({j1, . . . , jm}) and (j1, . . . , jm) ∈ {1, . . . , n}m.
[5]

(d) (i) Define the determinant |A| of an n × n matrix A = (ai,j) over the field K.
Which property of a determinant follows from the assertion proved in Part (c)?

[2]

(ii) Straight from the definition, evaluate the determinant D = |A|, where

A =


0 −1 0 0
2 0 0 0
0 1 1 0
1 0 0 3

 .

[3]

(iii) State the Laplace expansion theorem for determinants, and use it to recompute
the determinant D of Part (ii).

[5]
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Question 4 (20 marks). (a) Derive Cramér’s rule for the solution of an invertible
(n× n)-system of linear equations from results of the course.

[8]

(b) (i) When is a linear map P : V → V on a vector space V called a projection?
[3]

(ii) Suppose U1, . . . , Ur ≤ V . What does it mean to say that the vector space V is
the direct sum of U1, . . . , Ur?

[3]

(c) Show the following: if P : V → V is a projection, then we have

V = image(P )⊕ kernel(P ).

[6]
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Question 5 (20 marks). Let C = C[0, π] be the set of continuous functions
f : [0, π] → R. In what follows, you may quote standard theorems from calcu-
lus without proof. You may also use without proof the facts that∫

sin(x) dx = − cos(x),∫
cos(x) dx = sin(x),∫

sin(x) cos(x) dx =
1

2
sin2(x),∫

sin2(x) dx =
1

2

(
x− sin(x) cos(x)

)
,∫

cos2(x) dx =
1

2

(
x+ sin(x) cos(x)

)
.

(a) Defining addition and scalar multiplication of functions via

(f + g)(x) = f(x) + g(x), (f, g ∈ C, 0 ≤ x ≤ π),

(αf)(x) = αf(x), (f ∈ C, α ∈, 0 ≤ x ≤ π),

show that C becomes a real vector space.
[3]

(b) What is an inner product on a real vector space V ?
[2]

(c) Show that the function 〈·|·〉 : C × C → R given by

〈f |g〉 :=
∫ π

0

f(x)g(x)dx

is an inner product on the real vector space C as defined in Part (a).
[2]

(d) Apply the Gram-Schmidt algorithm to obtain an orthonormal system {g1(x), g2(x), g3(x)},
such that 〈

g1(x), g2(x), g3(x)
〉
=
〈
sin(x), cos(x), 1

〉
.

[13]

End of Paper.
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