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Question 1. [26 marks]
Let {Xt} be a time series such that

Xt = mt + Zt

where mt denotes a polynomial trend and Zt is WN(0, σ2) which is white noise with mean 0
and variance σ2.

(a) Suppose mt = β0 + β1t is a linear trend.

(i) Define what it means for a process to be weakly stationary. [2]

(ii) Is {Xt} weakly stationary? Justify your answer. [3]

(iii) Show that the mean of the moving average filter

Wt =
1

7

3�

j=−3

Xt−j

is β0 + β1t. [3]

(iv) Define the operator ∇ and show that ∇Xt is weakly stationary. [7]

(b) Suppose now mt = β0 + β1t+ β2t
2 is a quadratic trend.

(i) Show that ∇mt is a polynomial of degree 1, i.e., a straight line. [3]

(ii) Compute Cov(Wt+7,Wt) and explain your answer. [8]

Question 2. [12 marks] For each of the following processes, describe the expected behavior
of the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots:

(a) Gaussian white noise [3]

(b) MA(2) [3]

(c) AR(3) [3]

(d) ARMA(3,12). [3]

Question 3. [19 marks]
Let {Xt} be the moving average process of order 1 given by

Xt = Zt + 0.8Zt−1,

where {Zt} is WN(0, 1).

(a) Define what it means for a general moving average process to be invertible, and state
whether the MA(1) process above is invertible or not. [4]

(b) Compute the autocovariance and autocorrelation functions for this process. [6]

(c) Using the result from (b), compute the variance of (X1 +X2)/2. [9]
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Question 4. [27 marks]

(a) A time series with a periodic component can be constructed from

Xt = U1 sin (2πt) + U2 cos (2πt),

where U1 and U2 are independent random variables with zero means and
E(U2

1 ) = E(U 2
2 ) = σ2. Show that this series is weakly stationary with autocovariance

function

γ(h) = σ2 cos (2πh).

(Hint: use trigonometric identities such as
sin(A+ B) = sin(A) cos(B) + cos(A) sin(B),
cos(A+ B) = cos(A) cos(B)− sin(A) sin(B) and sin2(A) + cos2(A) = 1.) [8]

(b) Consider the time series

Xt = 0.5Xt−1 + 0.5Xt−2 + Zt − 1.7Zt−1 + 0.7Zt−2,

where Zt is WN(0, 3).

(i) What model is this? Beware of parameter redundancy! [6]

(ii) Check whether this process is causal and invertible. [4]

(iii) Express this time series in the form of a linear process.
Hint: Taylor series

1

1 + x
=

∞�

j=0

(−x)j = 1− x+ x2 − x3 + x4 − · · · . [9]
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Question 5. [16 marks] Figure 1 below shows quarterly UK gas consumption from the first
quarter of 1960 to the last quarter of 1986, in millions of therms.

(a) Describe the main features of the time series shown by the plot in Figure 1. [6]

(b) Describe the steps needed in order to identify the best model and do forecasting for our
time series data. Include brief discussions on:

(i) methods to remove trend and seasonality,

(ii) model diagnostics,

(iii) method and algorithm to obtain best linear predictors.

(Note: you are not required to discuss R functions or output here, just describe the steps
in plain English.) [10]
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Figure 1: UK quarterly gas consumption.

End of Paper.
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