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Question 1. [25 marks]

(a) Consider a time series model

Xt = mt + Yt

where the trend mt is a polynomial function of t with degree k and
coefficients β0, β1, . . . , βk. The first difference is defined as

∇Xt = Xt −Xt−1.

(i) Show that if mt is a polynomial function of t with degree 1, then the
first difference gives

∇Xt = β1 +∇Yt.

[4]

(ii) Similarly, assume that mt is a polynomial with degree 2. Find the
second difference as a function of the coefficients. [5]

(b) (i) For a time series model
Xt = mt + Yt

define a linear filter. [2]

(ii) What does it mean to say that a linear filter passes through without
distortion? [2]

(iii) A time series is to be smoothed by fitting a quadratic polynomial to
successive groups of 5 observations, thus obtaining a weighted moving
average filter. Find the filter which passes through without distortion, if
least squares fitting is used. [12]
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Question 2. [21 marks] An MA(1) process with parameter θ is defined by the
equation

Xt = Zt + θZt−1,

where {Zt} is a white noise process, that is, a sequence of uncorrelated random
variables with mean zero and constant variance σ2.

(a) Define what it means for a moving average process to be invertible. [2]

(b) Show that an MA(1) process is invertible if the parameter θ satisfies a
condition which you should state. [5]

(c) The autocovariance of Xt and Xt+τ is defined to be γ(τ). For the MA(1)
process with parameter θ find γ(0) and γ(1) and write down γ(τ) for τ ≥ 2.
Hence calculate the autocorrelation function (ACF) for the MA(1) process. [7]

(d) Show that an MA(1) process with parameter θ−1 has the same ACF as an
MA(1) process with parameter θ. [2]

(e) Consider two MA(1) processes with parameters θ = 0.25, σ2 = 16 and
θ = 4, σ2 = 1 respectively. Show that they have the same autocovariance
function (ACVF). Explain how you can choose between these processes by
considering the invertibility of the processes. [5]

Question 3. [15 marks]

(a) Define the sample autocorrelation function (ACF) of a time series with n
observations. Explain briefly how the sample partial autocorrelation function
(PACF) can be calculated. [6]

(b) Describe briefly the expected behaviour of the ACF and PACF for
autoregressive (AR(p)), moving average (MA(q)) and autoregressive moving
average (ARMA(p, q)) processes. [6]

(c) Values of the sample ACF and of the sample PACF for lags τ = 1, . . . , 5 of
an observed time series are given in the following tables. What kind of
model is the time series most likely to follow? Explain your answer. [3]

ACF
τ 1 2 3 4 5
ρ̂(τ) 0.9 0.8 0.5 0.2 0.1

PACF
τ 1 2 3 4 5
φ̂ττ 0.9 0.01 -0.02 0.03 -0.02
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Question 4. [29 marks]

(a) Consider the following three time series models where the error terms Zt are
uncorrelated random errors with zero mean and constant variance.

(i)
Xt − 0.3Xt−1 = Zt.

(ii)
Xt − 1.2Xt−1 − 0.2Xt−2 = Zt − 0.5Zt−1.

(iii)
Xt −Xt−1 = Zt.

For each model, say whether it is stationary or not and specify p and q in the
standard ARMA (p, q) framework. [8]

(b) Show that the model
Xt −Xt−1 = Zt.

can be written in the ARIMA(p, d, q) framework and specify the values of p,
d and q. [3]

(c) Consider the time series

Xt +
1

6
Xt−1 −

1

3
Xt−2 = Zt −

3

4
Zt−1 +

1

8
Zt−2,

where Zt is a white noise random variable.

(i) Determine the values of p and q so that there is no parameter
redundancy in the model. [5]

(ii) Check whether the process is causal and invertible. [4]

(iii) Obtain a linear process form of this time series. [9]
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Question 5. [10 marks] An autoregressive process {Xt} of order 2 has the form

Xt =
1

3
Xt−1 +

2

9
Xt−2 + Zt,

where Zt is a zero-mean white noise random variable.

(a) The homogeneous difference equations for the autocovariance function γ are
given by

γ(τ)− 1

3
γ(τ − 1)− 2

9
γ(τ − 2) = 0 for τ ≥ 2

with initial conditions

γ(0)− 1

3
γ(−1)− 2

9
γ(−2) = σ2

γ(1)− 1

3
γ(0)− 2

9
γ(−1) = 0

Write down these difference equations as a function of the autocorrelation
function ρ(τ).
Write down ρ(0) and evaluate ρ(1). [4]

(b) The general solution of the difference equation for the autocorrelation
function is of the form

ρ(τ) = c1ζ
−τ
1 + c2ζ

−τ
2 ,

where ζ1 and ζ2 are the roots of φ(z) = 1− 1
3
z − 2

9
z2. Find the

autocorrelation function.

Hint: Use part (a). [6]

End of Paper.
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