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Question 1. [20 marks] Suppose that Y1, . . . , Yn are independent binomial random
variables such that

P (Y = k) =

�
m

k

�
pk(1− p)m−k for k = 0, 1, . . . ,

where m is known. You may assume that the Yi have expectation E(Yi) = mp. Let Y
denote

Y =
1

n

n�

i=1

Yi.

(a) Show that the method of moments estimator for p is Y /m. [5]

(b) Show that the distribution of the Yi belongs to the exponential family of
distributions. [5]

(c) Using (b) and a theorem stated in a lecture, show that
�n

i=1 Yi is a complete
sufficient statistic for p and that Y /m is a Minimum Variance Unbiased Estimator
for φ(p) = p. [10]
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Question 2. [20 marks] Suppose that Y1, . . . , Yn are independent inverse gamma
random variables with probability density function

fY (y) =
β3

2y4
e−

β
y , y > 0,

where β > 0.

(a) Show that the Cramér-Rao lower bound for unbiased estimators of β is

β2

3n
.

[7]

(b) Given that E(Y ) = β/2 and var(Y ) = β2/4, show that the Mean Square Error of
the estimator of β

Tn(Y ) =
2

n+ 1

n�

i=1

Yi

is
β2

n+ 1

and that the sequence of estimators Tn(Y ) is consistent. [8]

(c) Use Neyman’s Factorisation Lemma to show that

n�

i=1

1

Yi

is a sufficient statistic for β. [5]
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Question 3. [20 marks] Suppose that Y1, . . . , Yn are independent gamma distributed
random variables with mean 2θ and probability density function

fY (y) =
y

θ2
e−

y
θ , y > 0,

where θ > 0.

(a) Show that the maximum likelihood estimator of θ is

θ̂ =
1

2n

n�

i=1

Yi

. [7]

(b) Obtain the asymptotic distribution of θ̂, and hence write down an approximate
100(1− α)% confidence interval for θ. [8]

(c) Given that the random variable X = Y/θ is Γ(2, 1) with probability density
function fX(x) = xe−x for x > 0, explain why

1

θ

n�

i=1

Yi

is an exact pivot for θ and derive an exact 100(1− α)% confidence interval for θ.
You may use a fact about sums of independent gamma random variables stated in
a lecture. [5]
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Question 4. [20 marks]

(a) Suppose that Y1, . . . , Yn1 are N(µ1, σ
2) random variables and Yn1+1, . . . , Yn1+n2 are

N(µ2, σ
2) random variables, all independent, where σ2 is known.

(i) Show that the maximum likelihood estimators of µ1 and µ2 are

µ̂1 =
1

n1

n1�

i=1

Yi

and

µ̂2 =
1

n2

n1+n2�

i=n1+1

Yi. [7]

(ii) State a pivot for µ1 − µ2 and give an exact 100(1− α)% confidence interval
for µ1 − µ2. [7]

(b) Let Y = (Y1, . . . , Yn)
T where the Yi are continuous random variables whose

distribution has parameter θ and sample space which does not depend on θ and
let L(θ;Y ) be the associated likelihood function. Show that

E
�
d logL(θ;Y )

dθ

�
= 0.

[6]

Question 5. [20 marks] Suppose that Y1, . . . , Yn are independent Pascal random
variables with probability mass function

P (Y = y) = π(1− π)y−1, y = 1, 2, . . . ,

where 0 < π < 1. Consider testing H0 : π = π0 against H1 : π �= π0.

(a) Write down the likelihood, L(π; y), and hence find the generalised likelihood ratio
given by Λ(y) = L(π̂0; y)/L(π̂; y), where π̂0 is the restricted maximum likelihood
estimate of π under H0 and π̂ is the maximum likelihood estimate. [9]

(b) State the critical region of the generalised likelihood ratio test in terms of Λ(y)
and explain why this only depends on the data through a sufficient statistic. [4]

(c) Use Wilks’ theorem to obtain the critical region of a test with approximate
significance level α for large n. [7]

End of Paper.
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