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Question 1. Suppose that Y1, Y2, . . . , Yn are independent geometric random
variables such that P (Y = y) = p(1− p)y−1 for y = 1, 2, . . .. You may assume
that the Yi have expectation E(Yi) = 1/p.

(a) Find the method of moments estimator for p. [5]

(b) Show that the distribution of the Yi belongs to the exponential family
of distributions. [5]

(c) Using (b) and a theorem stated in a lecture, show that
∑n

i=1 Yi is a
complete, sufficient statistic for p and that Y = 1

n

∑n
i=1 Yi is a Minimum

Variance Unbiased Estimator for φ(p) = 1/p. [10]

Question 2. Suppose that Y1, Y2, . . . , Yn are independent normal random
variables with zero mean and variance θ, where θ > 0.

(a) Use Neyman’s factorisation theorem to show that
∑n

i=1 Y
2
i is a

sufficient statistic for θ. [6]

(b) Show that the Cramér-Rao lower bound for unbiased estimators of θ is
given by CRLB(θ) = 2θ2/n. [8]

(c) Prove that Tn = (Y 2
2 + · · ·+ Y 2

n−1)/(n− 2) is an unbiased estimator of θ.
Given that Var(Y 2) = 2θ2, find the efficiency of Tn and show that the
sequence of estimators Tn is asymptotically efficient. [6]
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Question 3. Suppose that Y1, Y2, . . . , Yn are independent Weibull random
variables with probability density function

fY (y) =
3y2

θ3
exp

(
−y

3

θ3

)
, y > 0,

where θ > 0.

(a) Show that the maximum likelihood estimator of θ is

θ̂ =

(
1

n

n∑
i=1

Y 3
i

)1/3

.

[6]

(b) Given that E(Y 3) = θ3, show that the Fisher information

E
(
− ∂2

∂θ2
logL(θ;Y1, . . . , Yn)

)
of Y1, Y2, . . . , Yn equals 9n/θ2. [4]

(c) State a theorem about the limiting distribution (including its
parameters) of maximum likelihood estimators as n→∞. [4]

(d) Use your results from parts (b) and (c) to obtain the asymptotic
distribution of θ̂, and hence find an approximate 100(1− α)%
confidence interval for θ. [6]

Question 4. Let Y1, . . . , Yn be independent Uniform(0, θ) distributed
random variables.

(a) Define what is meant by a pivot for θ. [6]

(b) Let M be the maximum of Y1, . . . , Yn. Show that P (M ≤ x) = (x/θ)n

for 0 ≤ x ≤ θ. [4]

(c) Use (b) to show that M/θ is a pivot for θ. [4]

(d) Use part (c) to derive an exact 95% confidence interval for θ based on
M . [6]
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Question 5. Suppose that Y1, . . . , Yn are independent Pascal random
variables with probability mass function

P (Y = y) =

(
y + r − 1
r − 1

)
πr(1− π)y, y = 0, 1, . . . ,

where 0 < π < 1. Consider testing H0 : π = π0 against H1 : π 6= π0.

(a) Write down the likelihood, L(π; y), and hence find the generalised
likelihood ratio given by Λ(y) = L(π̂0; y)/L(π̂; y), where π̂0 is the
restricted maximum likelihood estimate of π under H0 and π̂ is the
maximum likelihood estimate. [9]

(b) State the critical region of the generalised likelihood ratio test in terms
of Λ(y) and explain why this only depends on the data through a
sufficient statistic. [4]

(c) Use Wilks’ theorem to obtain the critical region of a test with
approximate significance level α for large n. [7]

End of Paper.
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