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Question 1. Suppose that Y1, . . . , Yn are independent Pareto random variables with
probability density function

fY (y) =
θ2θ

yθ+1
, y > 2,

where θ > 0.

(a) State Neyman’s factorisation theorem. [3]

(b) Hence or otherwise, show that
∏n

i=1(Yi) is a sufficient statistic for θ. [5]

(c) Show that the maximum likelihood estimator of θ is

θ̂ =
n∑n

i=1 log(Yi)− n log 2
.

[6]

(d) Evaluate the Cramér-Rao lower bound for unbiased estimators of θ. [6]

(e) Hence or otherwise, find an approximate 95% confidence interval for θ. [4]

Question 2. Let Y1, . . . , Yn be independent normal random variables with probabil-
ity density function

fY (y) =
1√
2πσ

exp

{
−(y − µ)2

2σ2

}
−∞ < y <∞

where −∞ < µ <∞ and σ2 > 0, and µ and σ2 are unknown.

(a) Show that this distribution is a member of the exponential family. [8]

(b) Write down complete sufficient statistics for µ and σ2. [3]

(c) Prove that Ȳ is the minimum variance unbiased estimator of µ. [5]
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Question 3. Let Y1, . . . , Yn be independent uniform random variables with proba-
bility density function

fY (y) =
1

θ
, 0 6 y 6 θ.

(a) Show that the method of moments estimator, θ̃ of θ, is given by θ̃ = 2Ȳ . [4]

(b) Show that the mean and variance of the method of moments estimator are

θ and
θ2

3n

respectively. [4]

(c) Find the maximum likelihood estimator, θ̂ of θ. [4]

(d) Show that the pdf of the maximum likelihood estimator is

fθ̄(y) =
nyn−1

θn
, 0 < y < θ .

[4]

(e) Show that the bias and variance of the maximum likelihood estimator are

−θ
n+ 1

and
nθ2

(n+ 1)2(n+ 2)

respectively. [7]

(f) Compute the mean square error of the two estimators θ̃ and θ̂. For what values
of n is the mean square error of θ̂ bigger than that of θ̃? [5]

Question 4. Let Y1, . . . , Yn1 be exponential random variables with parameter λ1

and let Yn1+1, . . . , Yn1+n2 be exponential random variables with parameter λ2, all
independent, where λ1 > 0 and λ2 > 0. Let Ȳ1 be the mean of the first n1 observa-
tions, and let Ȳ2 be the mean of the remaining observations.

(a) Show that the maximum likelihood estimators of λ1 and λ2 are λ̂1 = 1/Ȳ1 and
λ̂2 = 1/Ȳ2 and hence give the maximum likelihood estimator of λ1/λ2. [6]

(b) Given that 2λ1n1Ȳ1 and 2λ2n2Ȳ2 have chi-squared distributions with respec-
tive degrees of freedom 2n1 and 2n2, explain why λ1Ȳ1/(λ2Ȳ2) is a pivot for
λ1/λ2. [6]

(c) Use this pivot to derive an exact 100(1− α)% confidence interval for λ1/λ2. [5]
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Question 5. Let Y1, . . . , Yn be independent mean zero normal random variables
with probability density function

fY (y) =
1√
2πσ

exp

{
− y2

2σ2

}
−∞ < y <∞

where σ2 > 0, and consider testing H0 : σ = σ0 against H1 : σ = σ1 where σ1 > σ0

for fixed σ0 and σ1.

(a) Write down the likelihood, L(σ2; y), and hence find the generalised likelihood
ratio given by Λ(y) = L(σ2

0; y)/L(σ2
1; y). [6]

(b) Find the general form of the most powerful test of H0 against H1. [3]

(c) Given that under H0,
∑n

i=1 Y
2
i /σ

2
0 ∼ χ2

n, derive the form of the critical region
of the test with significance level α. [2]

(d) Explain why a uniformly most powerful test of H0 : σ = σ0 against H1 :
σ = σ1 exists in this case. Describe briefly what is meant by a uniformly most
powerful test. [4]

End of Paper.
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