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Question 1 Suppose that Y1, . . . , Yn are independent beta random variables with
probability density function

fY (y) = θ(1− y)θ−1, 0 < y < 1,

where θ > 0.

(a) Show that
∏n

i=1(1− Yi) is a sufficient statistic for θ. [6]

(b) Evaluate the Cramér-Rao lower bound for unbiased estimators of 1/θ. [9]

(c) Given that E{log(1−Y )} = −1/θ and that the above statistic is also complete,
explain why −

∑n
i=1 log(1−Yi)/n is the minimum variance unbiased estimator

of 1/θ. [5]

Question 2 Let Y1, . . . , Yn be independent random variables from the gamma dis-
tribution with probability density function

fY (y) =
λαyα−1

Γ(α)
e−λy, y > 0,

where α > 0, λ > 0 and Γ denotes the gamma function.

(a) Express this distribution as a member of the exponential family. [7]

(b) State complete sufficient statistics for α and λ. [3]

(c) Given that E(Y ) = α/λ and var(Y ) = α/λ2, derive the method of moments
estimators of α and λ. Are these estimators efficient? [10]

Question 3 Suppose that Y1, . . . , Yn are independent Weibull random variables
with second moment θ and probability density function

fY (y) =
2y

θ
exp

(
−y2

θ

)
, y > 0,

where θ > 0.

(a) Show that the maximum likelihood estimator of θ is θ̂ =
∑n

i=1 Y 2
i /n. [7]

(b) Find the asymptotic distribution of θ̂, and hence write down an approximate
100(1− α)% confidence interval for θ. [8]

(c) Given that the probability density function of X = Y 2/θ is fX(x) = exp(−x)
for x > 0, explain why

∑n
i=1 Y 2

i /θ is a pivot for θ and use this to obtain an
exact 100(1− α)% confidence interval for θ. [5]
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Question 4 Let Y1, . . . , Yn1 be normal random variables with zero mean and vari-
ance σ2

1 and let Yn1+1, . . . , Yn1+n2 be normal random variables with zero mean and
variance σ2

2, all independent, where σ2
1 > 0 and σ2

2 > 0.

(a) Show that the maximum likelihood estimators of σ2
1 and σ2

2 are

σ̂2
1 =

1
n1

n1∑
i=1

Y 2
i and σ̂2

2 =
1
n2

n1+n2∑
i=n1+1

Y 2
i ,

and hence give the maximum likelihood estimator of σ2
1/σ2

2. [8]

(b) Given that n1σ̂
2
1/σ2

1 and n2σ̂
2
2/σ2

2 have chi-squared distributions with respective
degrees of freedom n1 and n2, explain why σ2

2σ̂
2
1/(σ2

1σ̂
2
2) is a pivot for σ2

1/σ2
2. [6]

(c) Use this pivot to derive an exact 100(1− α)% confidence interval for σ2
1/σ2

2. [6]

Question 5 Suppose that Y1, . . . , Yn are independent Pascal random variables with
probability mass function

P (Y = y) =

(
y + r − 1

r − 1

)
πr(1− π)y, y = 0, 1, . . . ,

where 0 < π < 1. Consider testing H0 : π = π0 against H1 : π 6= π0.

(a) Write down the likelihood, L(π; y), and hence find the generalised likelihood
ratio given by Λ(y) = L(π̂0; y)/L(π̂; y), where π̂0 is the restricted maximum
likelihood estimate of π under H0 and π̂ is the maximum likelihood estimate. [9]

(b) State the critical region of the generalised likelihood ratio test in terms of Λ(y)
and explain why this only depends on the data through a sufficient statistic. [4]

(c) Use Wilks’ theorem to obtain the critical region of a test with approximate
significance level α for large n. [7]
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