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Please try to upload your work well before the end of the submission window, in case you experience
computer problems. Only one attempt is allowed – once you have submitted your work, it is final.
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Question 1 [24 marks]. Suppose that Yi ∼ N(µi,σ
2
i ) for i = 1,2, . . . ,n, all independent, where

µi = β1xi +β2x2
i , xi is a known covariate and the σi are known.

(a) Write down the likelihood for the data y1, . . . ,yn. [6]

(b) Find the maximum likelihood estimators β̂1 and β̂2 of β1 and β2. [12]

(c) Explain why the above is a generalised linear model. [4]

(d) State the iterative weights and working dependent variates for Fisher’s method of scoring. [2]
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Question 2 [19 marks]. The numbers of new melanoma cases (y) in 1969-1971 among white males
in two areas (w) for six ages (x), in years, were recorded, where the ages are midpoints of intervals.
Below are the data.

x 30 40 50 60 70 80 30 40 50 60 70 80
w 1 1 1 1 1 1 2 2 2 2 2 2
y 61 76 98 104 63 80 64 75 68 63 45 27

Let Yjk denote the number of new melanoma cases for age xk in area j. Then it is assumed that
Yjk ∼ Poisson(µ jk) for j = 1,2 and k = 1,2, . . . ,6, all independent, where log(µ jk) = α j +β jxk. This
model was fitted to the data using R and the following output was obtained:

Call:
glm(formula = y ~ w + w:x, family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.29127 -1.75130 -0.07461 1.19941 2.42769

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.264158 0.155300 27.458 < 2e-16 ***
w2 0.531125 0.232380 2.286 0.0223 *
w1:x 0.002206 0.002668 0.827 0.4084
w2:x -0.014209 0.003225 -4.405 1.06e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 74.240 on 11 degrees of freedom
Residual deviance: 29.885 on 8 degrees of freedom
AIC: 110.11

Number of Fisher Scoring iterations: 4

(a) Plot the numbers of new melanoma cases against age by area. What are your conclusions? [5]

(b) Write down the fitted Poisson regression model for each area. [5]

(c) Use the above output to assess the goodness of fit of the model. [4]

(d) Test whether the regression lines are parallel. [5]
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Question 3 [21 marks]. Suppose that Yi ∼ Bin(ri,πi) for i = 1,2, . . . ,n, all independent, where the
ri are known, Φ−1(πi) = β0 +β1xi, xi is a known covariate and Φ denotes the standard normal
distribution function.

(a) Find the Fisher information matrix. [8]

(b) Obtain the asymptotic distribution of the maximum likelihood estimator β̂0 of β0. [8]

(c) Write down an approximate 100(1−α)% confidence interval for β0. [3]

(d) Given that the vectors y and x in R contain the responses and the covariate values, what
commands would you use to obtain the details of the fitted model? [2]

Question 4 [23 marks]. An experiment was conducted in which 141 fish were placed in a large
tank for a period of time and some are eaten by large birds of prey. The fish are categorised by their
level of parasitic infection. A summary of the data is provided in the contingency table below.

Level of Infection
Uninfected Lightly Infected Highly Infected Total

Eaten 1 10 37 48
Not Eaten 49 35 9 93
Total 50 45 46 141

Let Yjk denote the number of fish classified in row j and column k. Then it is assumed that the Yjk have
a multinomial distribution with parameters n and θ jk for j = 1,2 and k = 1,2,3, where n = 141 and θ jk
is the probability that a fish is classified in row j and column k. The null hypothesis is that being eaten
and infection status are independent.

(a) State the null hypothesis in terms of E(Yjk). Express this as a log-linear model, explaining your
notation and any additional constraints. [6]

(b) Write down the maximal model. [4]

(c) Obtain the expected values under the null hypothesis. Compare these with the observed values. [5]

(d) Find the deviance and the value of Pearson’s goodness-of-fit test statistic. What is your
conclusion about the independence of being eaten and infection status? [8]

Question 5 [13 marks]. Suppose that T1, . . . ,Tn are independent Weibull random variables with
probability density function

f (t) = 3λ t2e−λ t3
,

where λ > 0.

(a) Show that this distribution is a member of the exponential family. [4]

(b) Explain why the distribution is not in canonical form. [1]

(c) Write down the likelihood for the data (ti,δi) for i = 1,2, . . . ,n, where δi is a censoring variable. [4]

(d) Find the maximum likelihood estimator λ̂ of λ . [4]

End of Paper.
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