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You should attempt ALL questions. Marks available are shown next to the
questions.

In completing this assessment:

• You may use books and notes.

• You may use calculators and computers, but you must show your work-
ing for any calculations you do.

• You may use the Internet as a resource, but not to ask for the solution
to an exam question or to copy any solution you find.

• You must not seek or obtain help from anyone else.

All work should be handwritten and should include your student number.

The exam is available for a period of 24 hours. Upon accessing the exam, you will
have 3 hours in which to complete and submit this assessment.

When you have finished:

• scan your work, convert it to a single PDF file, and submit this file using the
tool below the link to the exam;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

Please try to upload your work well before the end of the submission window, in case
you experience computer problems. Only one attempt is allowed – once you have
submitted your work, it is final.
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Figure 1: Spacetime diagram for Question 1. The axes (x, ct) correspond to a frame F
which is at rest with respect to the tunnel while the axes (x′, ct′) correspond to the car’s
frame.

In this exam we set Newton’s constant of gravitation G = 1 and the speed of light c = 1
unless otherwise stated.

Question 1 [20 marks]. A race car speeds through a tunnel at a constant velocity.
The worldlines of both ends of the car and both ends of the tunnel are shown in the
spacetime diagram, Fig. 1. Answer the following questions:

(a) At which of the points labeled A through T on the spacetime diagram does the
front end of the car emerge from the tunnel? [4]

(b) At which point does the rear end of the car enter the tunnel? [4]

(c) At which point is the rear end of the car when the front end emerges from the
tunnel in the car’s frame? [4]

(d) At which point is the front end of the car when the rear end of the car enters the
tunnel in the car’s frame? [4]

(e) Does the car fit inside the tunnel in the tunnel’s frame? How about in the car’s
frame? Reason your answer. [4]
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Question 2 [20 marks]. A vector field ξa is said to be a conformal Killing vector
field of the metric gab if it satisfies

∇(aξb) =
1

2
ψ gab

for some scalar function ψ. Recall that ξa is a Killing vector field if ψ = 0 and
∇(aξb) = ∂(aξb) − Γcab ξc, where Γcab are the usual Christoffel symbols.

(a) Show that this definition of conformal Killing vector field is equivalent to

ξc ∂cgab + gac ∂bξ
c + gbc ∂aξ

c = ψ gab .

[10]

(b) Using the result of Part (a), show that if ξa is a conformal Killing vector field of
the metric gab, then ξa is a Killing vector field of the metric g̃ab = e2φ gab, where φ
is any function that obeys

2 ξc∂cφ+ ψ = 0 .

[10]

Question 3 [20 marks]. Consider the following spacetime:

ds2 = −
(

1− r2

`2

)
dt2 +

dr2

1− r2

`2

+ r2(dθ2 + sin2 θ dφ2) ,

where ` > 0 is a constant.

(a) Let u = t− ` tanh−1(r/`) for r ≤ `. Use the coordinates (u, r, θ, φ) to show that
the surface of r = ` is non-singular. (Hint: Recall that d

dx
tanh−1(x) = 1

1−x2 .) [5]

(b) Show that the vector field gab∂bu is null. [5]

(c) Show that the radial null geodesics obey either

du

dr
= 0 or

du

dr
= − 2

1− r2

`2

.

For r < `, which of these families of geodesics is outgoing, i.e., dr
dt

= ṙ
ṫ
> 0, where

the dot ˙ denotes the derivative with respect to the affine parameter along the
geodesics? Sketch the radial null geodesics in the (u, r) plane for 0 ≤ r ≤ `, where
the r-axis is horizontal and the lines of constant u are inclined at 45◦ with respect
to the horizontal. [10]
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Question 4 [20 marks]. Consider the following spacetime:

ds2 = −
(
r2 − 2M(v)

r

)
dv2 + 2 dv dr + r2(dx2 + dy2) ,

where M(v) is a function of the coordinate v.

(a) Explain in your own words the notion of black hole based on the behaviour of the
null geodesics. Does this spacetime have a horizon? Reason your answer. [5]

(b) Use the Euler-Lagrange equations for the geodesics to show that

Γvvv = r +
M(v)

r2
,

Γvxx = −r ,

Γrvv = r3 −M(v)− 2M(v)2

r3
+
M ′(v)

r
,

Γrrv = −1

r

(
r2 +

M(v)

r

)
,

Γxxr =
1

r
.

[5]

(c) Using the fact that, in certain units, the Ricci scalar for this geometry evaluates
to R = −12 and the Einstein equation with a cosmological constant is given by,

Gab − 3 gab = 8π Tab ,

calculate the vv component of the stress tensor corresponding to the line element
above. (Hint: recall that Γbba = ∂a ln

√
|g|.) [10]

c© Queen Mary University of London (2022) Continue to next page



MTH6132 (2022) Page 5

Question 5 [20 marks].

(a) What does the quadrupole formula

〈P 〉 =
1

5
〈
...
Qij

...
Q
ij〉

compute? Reason the answer. [5]

(b) A point mass m undergoes a harmonic motion along the z-axis with frequency ω
and amplitude L,

x(t) = y(t) = 0 , z(t) = L cos(ω t) .

Show that the only non-vanishing component of the quadrupole moment tensor is

Izz = mL2 cos2(ω t) .

[5]

(c) Use the quadrupole formula to compute the power radiated by the emission of
gravitational waves. (Hint: recall that 〈cos(Ωt)〉 = 〈sin(Ωt)〉 = 0 and
〈cos2(Ωt)〉 = 〈sin2(Ωt)〉 = 1

2
for a given frequency Ω.) [10]

End of Paper.
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