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You may refer to formulae in the appendix as well as general results from lectures.

Question 1 [16 marks]. In this question c denotes the speed of light.

(a) A muon at the origin of an inertial frame F moves along the x-axis at speed v = 0.5c
and decays after time t = 10−2s. How much time elapsed in the muon’s rest frame? [5]

(b) A rocket of length 100 metres in its rest frame travels at speed v = 0.5c along the x-axis
of an inertial frame F . What is the length of the rocket in frame F ? [5]

(c) Sketch a spacetime diagram for part (b) indicating the world-lines of the front and back
of the rocket in frame F , the 100 metre rocket rest length and the rocket length in F . [6]

Question 2 [17 marks]. Let A = (A0,A) and B = (B0,B) be 4-vectors in Minkowski space,
where A,B are their respective 3-vector components.

(a) Define what it means for A to be timelike and for B to be spacelike. [4]

(b) Show that if A is timelike and A ·B = 0 with respect to the Lorentzian dot product then
B is spacelike. [8]

(c) Define what it means for a 4-vector to be null and show that the sum of two null
4-vectors does not have to be null. [5]

Question 3 [16 marks]. Let U be the 4-velocity of a particle of rest mass m0.

(a) Define the 4-momentum p of the particle in terms of m0,U . [3]

(b) Writing p = (Ec−1, p), show that E = m0c2 for a particle at rest. [4]

(c) A particle of rest mass m0 moving at 0.5c collides with and coalesces with a particle of
mass 2m0 at rest in the laboratory frame. Find the rest mass and velocity of the resulting
combined particle. You may assume that 4-momentum is conserved in the process. [9]

Question 4 [15 marks]. The components V a of a vector on a manifold transform under a
change of coordinates from xa to x′a as V ′a = ∂x′a

∂xb V b.

(a) Write down how the components Wa of a covector similarly transform. [3]

(b) Using the transformation properties of vectors and covectors, show that WaV a

transforms as a scalar. [6]

(c) Using formulae for a covariant derivative ∇ in terms of Christoffel symbols Γa
bc, show

that

(∇aWb)V b +Wb(∇aV b) =
∂

∂xa (WbV b). [6]
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Question 5 [17 marks]. Let A > 0 be a constant. The metric for an expanding
two-dimensional spacetime in certain units is given by

ds2 =−dt2 + eAtdx2.

(a) Write down the covariant and contravariant components of the metric tensor for this
spacetime. Use coordinates xa where x0 = t,x1 = x. [3]

(b) Calculate the Christoffel symbols Γa
bc for the Levi-Civita connection for this metric

using the formula in the Appendix. [9]

(c) Use your results from part (b) to compute the curvature component R1
010. [5]

Question 6 [19 marks]. This question concerns a Schwarzschild black hole in standard
coordinates t,r,θ ,ϕ and units where c = 1, with

ds2 =−
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ
2 + sin2

θ dϕ
2).

(a) The metric is singular at two finite values of r. What are they and what is the key
difference in the nature of the two singularities? [4]

(b) Show that a radially infalling geodesic with θ̇ = ϕ̇ = 0 in the region r > 2GM obeys(
1− 2GM

r

)
ṫ = l (a constant), l2 = ṙ2 +

(
1− 2GM

r

)
. [9]

You may wish to use the relevant Christoffel symbols

Γ
0

01 = Γ
0

10 =
GM
r2

(
1− 2GM

r

)−1

, Γ
0

00 = Γ
0

11 = 0

and the normalisation of the 4-velocity.

(c) Show that the proper time for a particle to reach the event horizon coming in from
r = 8GM on the trajectory in part (b) with l = 1 is 28

3 GM. [4]

(d) What is the elapsed coordinate time t for the motion in part (c)? You are not asked to
justify your answer. [2]

End of Paper – An appendix of 1 page follows.
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You are reminded of the following, which you may use freely.

• Lower case Latin indices run from 0 to 3 for a four-dimensional spacetime.

• The metric tensor of the Minkowski spacetime is ηab such that

ds2 = ηabdxadxb =−c2dt2 +dx2 +dy2 +dz2

• The Lorentz transformations between two frames F and F ′ in standard configuration
with F ′ moving with speed v relative to F is

x′ = γ(x− vt), t ′ = γ

(
t− v

c2 x
)
, y′ = y, z′ = z, where γ =

1√
1− v2

c2

.

• 4-velocity in terms of usual velocity v with v = |v| and its normalisation

U =
dx
dτ

= γ(v)(c,v), U ·U =−c2.

• The covariant derivative of a covariant vector and contravariant respectively are given by

∇aVb = ∂aVb−Vc Γ
c
ba, ∇aV b = ∂aV b +Γ

b
caV c.

• The metric tensor satisfies
gabgbc = δa

c.

• Christoffel symbols for the Levi-Civita connection:

Γ
a

bc =
1
2

gad(∂bgdc +∂cgbd−∂dgbc).

• The Riemann curvature tensor is given by

Ra
bcd = ∂cΓ

a
bd−∂dΓ

a
bc +Γ

a
ecΓ

e
bd−Γ

a
edΓ

e
bc.

• Euler–Lagrange equations are

d
dλ

(
∂L
∂ ẋc

)
− ∂L

∂xc = 0.

• The geodesic equations are
ẍa +Γ

a
bcẋbẋc = 0.

• The normalisation of 4-velocity in units where c = 1 is

gabẋaẋb =−1.

End of Appendix.
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