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Question 1. [15 marks]

(a) In an inertial frame two events occur simultaneously at a distance of 3 metres
apart. In a frame moving with respect to this laboratory frame, one event
occurs later than the other by 10−8 s. By what spatial distance are the two
events separated in the moving frame? Supplement your argument with
spacetime diagrams. Recall c = 3×108 m/s. [8]

(b) Show that the composition of two Lorentz transformations is itself a Lorentz
transformation. You may assume that frames are in standard configuration. [7]

Question 2. [10 marks] Let Tab be a general covariant tensor of rank two.

(a) Show that Tab can be expressed as the sum of its symmetric part, T(ab), and
anti-symmetric part, T[ab]. [5]

(b) Prove that gabTab = gabT(ab), where gab is a general metric tensor. [5]

Question 3. [10 marks] A particle of rest mass M moving along the x-axis with
speed V decays into two particles, each with a rest mass M

2 . Assume both particles
continue to move along the x-axis. By comparing 4-momenta before and after the
event and using conservation of energy, show that the new particles move with the
same speed and that the speeds of these particles equal that of the original particle. [10]

Question 4. [15 marks] Let A be an arbitrary constant. The metric for a particular
two-dimensional spacetime is given by

ds2 =−e2Ardt2 +dr2.

(a) Determine the covariant and contravariant components of the metric tensor
for this spacetime. [2]

(b) Employ the formula for the Christoffel symbols given in the Appendix to
calculate the components Γa

bc of the connection for this metric. Note the
identification (x1,x2) = (t,r) is being used here. [6]

(c) Use your results from the previous part to compute R2
121. [7]

Question 5. [15 marks]

(a) Use the Lagrangian Method to write down the geodesic equations for the
standard Euclidean metric on R2 in polar coordinates. [7]

(b) Prove that straight lines are solutions to these equations. Argue that in fact,
all geodesics on the plane must be straight lines. [8]
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Question 6. [15 marks] The Riemann curvature tensor of a certain 4-dimensional
manifold M is of the form

Rabcd = K (gacgbd−gadgcb) ,

with K a constant.

(a) Show that ∇eRabcd = 0, justifying your steps. [5]

(b) Prove that the corresponding Ricci tensor is proportional to the metric,
making M an Einstein manifold. [5]

(c) Prove that M has constant scalar curvature (a fact which is true for all
Einstein manifolds of dimension n≥ 3). In the case of Einstein manifolds,

we necessarily have Rab =
R
n

gab. You may assume this equality. [5]

Question 7. [10 marks] Recall that Xa is called a Killing vector if it satisfies the
following equation

∇(aXb) = ∇aXb +∇bXa = 0.

Prove that if Tab is a symmetric tensor and Xa is a Killing vector, then the vector
Va = TabXb satisfies

∇
aVa = 0

whenever ∇aTab = 0. [10]

Question 8. [10 marks] Consider a metric perturbation of Minkowski spacetime,
given by

gab = ηab + εhab,

where ε is a small constant, |ε| � 1. Show that to first order, gab = ηab− εhab.
Hint: Given gabgbc = δ c

a , assume gab = ηab + εαhab for some constant α to be
determined. Expand gabgbc and use the symmetry of η to deduce α =−1. [10]

End of Paper—An appendix of 1 page follows.
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You are reminded of the following information, which you may use without proof.

• Lower case Latin indices run from 0 to 3.

• The metric tensor of the Minkowski spacetime is ηab such that

ds2 = ηabdxadxb =−c2dt2 +dx2 +dy2 +dz2

• The Lorentz transformations between two frames F and F ′ in standard
configuration are given by

x′ = γ(x− vt), t ′ = γ

(
t− vx

c2

)
, y′ = y, z′ = z

where
γ =

1√
1− (v2/c2)

and F ′ is moving with speed v relative to F .

• The covariant derivative of a covariant vector is given by

∇aVb = ∂aVb−Γ
f
baVf .

• The covariant derivative of a contravariant vector is given by

∇aV b = ∂aV b +Γ
b

a fV f .

• The metric tensor satisfies:
gabgbc = δa

c.

• Christoffel symbols (connection):

Γ
m

i j =
1
2

gmk(∂igk j +∂ jgik−∂kgi j).

• The Riemann curvature tensor:

Ra
bcd = ∂cΓ

a
bd−∂dΓ

a
bc +Γ

a
ecΓ

e
bd−Γ

a
edΓ

e
bc.

• Euler–Lagrange equations:

d
dλ

(
∂L
∂ ẋc

)
− ∂L

∂xc = 0

• Geodesic equations:
ẍa +Γ

a
bcẋbẋc = 0.

End of Appendix.
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