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Question 1. Let F and F ′ denote two inertial reference systems moving with
velocity v with respect to each other. In F , two events occur simultaneously at
t = 0, separated by a distance X along the x-axis. The time interval between the
events in F ′ is T .

(a) Draw a 2-dimensional spacetime diagram describing the situation, including
both F and F ′. You may assume units for which c = 1. [4]

(b) Show that the spatial distance between the two events in F ′ is
√
X2 + T 2. [4]

(c) Determine the relative velocity v of the frames F , F ′ in terms of X and T .
You may assume c = 1 in your calculations. [7]

Question 2. Let Ā and B̄ denote two arbitrary 4-vectors in Minkowski spacetime.

(a) Define what is meant by the scalar product Ā · B̄. What does it mean to say
|Ā|2 is an invariant? [4]

(b) Using the fact that |Ā|2, |B̄|2 and |Ā+ B̄|2 are invariants, show that the
scalar product Ā · B̄ is also an invariant. [4]

(c) Show that the sum of any two orthogonal spacelike vectors is also spacelike. [7]

Question 3. The metric for a particular two-dimensional spacetime is given by

ds2 =
1

y2
(
dx2 + dy2

)
(a) Determine the covariant and contravariant components of the metric tensor

for this spacetime. [2]

(b) Employ the formula for the Christoffel symbols given in the Appendix to
calculate the components Γ2

11, Γ1
12 and Γ2

22 of the connection for this
metric. [Note the identification (x1, x2) = (x, y) is used here.] [6]

(c) Assuming that the components in part (b) are the only nonzero ones, confirm

that the R2
121 component of the Riemann tensor for this metric is − 1

y2
.

Given that Gauss curvature is given by K = R1212/(g11g22 − g12g21), can
this metric describe a flat spacetime? [7]
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Question 4.

(a) Assume∇ is the Levi-Civita connection of a metric gab. Using properties of
this covariant derivative, simplify fully the expression

∇a

(
gbcS

bc
)
.

[3]

(b) Let Xa be the tangent vector to a geodesic given by xa(λ). Using part (a),
show that the norm of this tangent vector is conserved along geodesics, i.e.,

Xa∇a

(
|X|2

)
= 0.

[7]

Question 5. In this question consider units for which c = 1. A particle has rest
mass m0. Whilst at rest, it emits a photon and, as a result, its rest mass is reduced
to m0/2. By comparing components of the 4-momenta before and after the event,
show that the speed of the particle after the reduction of mass is 3/5. Show also
that the energy E = hν of the photon is 3m0/8. [10]

Question 6.

(a) It can be shown that in a Local Inertial Frame the Riemann tensor can be
expressed in the form

Rabcd =
1

2
(∂d∂agbc + ∂c∂bgad − ∂c∂agbd − ∂d∂bgac)

at a specific point p. Explain what is meant by a Local Inertial Frame and
employ the expression above to show that

Rabcd = −Rbacd

at p. Is this relation valid in an arbitrary frame of reference? Explain your
reasoning. [5]

(b) Suppose that the curvature of a spacetime satisfies the equation

Rab −
1

2
Rgab + λgab = 0,

where λ is a constant. Define the Ricci scalar and show that it satisfies

R = 4λ.

Hint: You will also need to prove and use the fact that gabgab = 4. [5]
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Question 7.

(a) Write down the transformation laws under general coordinate
transformations for a (1, 0)-tensor and a (0, 2)-tensor, respectively. Use this
to show that the product of these tensors is a tensor of type (1, 2). [5]

(b) Prove that if Wab
c is a (1, 2)-tensor, then Wab

b is a (0, 1)-tensor. [5]

Question 8. Consider the Schwarzschild metric

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
.

(a) What physical situation is described by this metric? What happens if M = 0? [2]

(b) At what two values of r is this metric in the above form singular? Re-express
the Schwarzschild metric in terms of Eddington-Finkelstein coordinates,
given by (t̂, r, θ, ϕ), where

t̂ = t+ 2GM ln |r − 2GM |.

Show that in these coordinates, one of the two singularities is removed.

[6]

(c) Use the Euler-Lagrange equations to derive the geodesic equations obeyed
by a photon for this metric. [7]

End of Paper—An appendix of 1 page follows.
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You are reminded of the following information, which you may use without proof.

• Lower case Latin indices run from 0 to 3.

• The metric tensor of the Minkowski spacetime is ηab such that

ds2 = ηabdxadxb = −c2dt2 + dx2 + dy2 + dz2

• The Lorentz transformations between two frames F and F ′ in standard
configuration are given by

x′ = γ(x− vt), t′ = γ
(
t− vx

c2

)
, y′ = y, z′ = z

where
γ =

1√
1− (v2/c2)

and F ′ is moving with speed v relative to F .

• The covariant derivative of a covariant vector is given by

∇aVb = ∂aVb − Γf
baVf .

• The covariant derivative of a contravariant vector is given by

∇aV
b = ∂aV

b + Γb
afV

f .

• The metric tensor satisfies:
gabg

bc = δa
c.

• Christoffel symbols (connection):

Γm
ij =

1

2
gmk(∂igkj + ∂jgik − ∂kgij).

• The Riemann curvature tensor:

Ra
bcd = ∂cΓ

a
bd − ∂dΓa

bc + Γa
ecΓ

e
bd − Γa

edΓ
e
bc.

• Euler–Lagrange equations:

d
dλ

(
∂L

∂ẋc

)
− ∂L

∂xc
= 0

• Geodesic equations:
ẍa + Γa

bcẋ
bẋc = 0.

End of Appendix.
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