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You are reminded of the following information, which you
may use without proof.

• Lower case Latin indices run from 0 to 3.

• The metric tensor of the Minkowski spacetime is ηab such that

ds2 = ηabdx
adxb = −c2dt2 + dx2 + dy2 + dz2

• The Lorentz transformations between two frames F and F ′ in standard con-
figuration are given by

t′ = γ

(
t− vx

c2

)
, x′ = γ(x− vt), y′ = y, z′ = z

where

γ =
1√

1− (v2/c2)

and F ′ is moving with speed v relative to F .

• The covariant derivative of a contravariant and a covariant vector are given,
respectively, by

∇aW
b = ∂aW

b + Γb
faW

f , ∇aVb = ∂aVb − Γf
baVf .

• The metric tensor satisfies:

gabg
bc = δa

c, ∇agbc = 0.

• Christoffel symbols (connection):

Γa
bc =

1

2
gad(∂bgdc + ∂cgbd − ∂dgbc).

• The Riemann curvature tensor:

Ra
bcd = ∂cΓ

a
bd − ∂dΓa

bc + Γa
ecΓ

e
bd − Γa

edΓe
bc.

• Euler–Lagrange equations:

d

dλ

(
∂L

∂ẋc

)
− ∂L

∂xc
= 0

• Geodesic equations:
ẍa + Γa

bcẋ
bẋc = 0.
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SECTION A: You should attempt all questions. Marks awarded are shown next to
the questions.

Question 1

(i) Explain what is understood by an inertial system of reference.

[3 marks]

(ii) Let F and F ′ denote two inertial reference systems moving with velocity v with
respect to each other along the x-axis. On page 2 you are given the Lorentz
transformation expressing the coordinates (t′, x′, y′, z′) in terms of the coordin-
ates (t, x, y, z). Give the inverse transformation —that is, the transformation
expressing the coordinates (t, x, y, z) in terms of the (t′, x′, y′, z′) coordinates.

[3 marks]

(ii) Consider a particle moving along the x-axis. Its velocity in the x direction
with respect to the frames F and F ′ is given, respectively, by

V =
dx

dt
, V ′ =

dx′

dt′

Use the Lorentz transformation between two frames F and F ′ in standard
configuration to show that

V ′ =
V − v

1− V v/c2
.

[4 marks]

Question 2

(i) Define what is meant by the scalar product of two arbitrary 4-vectors Ā and
B̄.

[3 marks]

(ii) Write down the conditions for a 4-vector to be timelike, spacelike and null,
respectively.

[3 marks]

(iii) Consider the 4-vectors

Ā = (a, 0, 2a, 0), B̄ = (2b, 0, b, 0)

where a and b are arbitrary constants. Determine whether Ā and B̄ are time-
like, spacelike or null. Under which conditions on a and b would C̄ = Ā + B̄
be null?

[4 marks]
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Question 3

(i) Give the transformation rule of a (2, 2)-tensor Tab
cd. Show that Tab

ad is a
(1, 1)-tensor.

[5 marks]

(ii) Give the definition of the Kronecker’s delta δa
b. Show that δa

b is a (1, 1)-tensor.

[5 marks]

Question 4
Let F and F ′ denote two inertial reference systems moving with velocity v with
respect to each other along the x-axis.

(i) If ∆t′ denotes an interval of time as measured by a clock at rest with respect
to F ′, use the Lorentz transformations given in page 2 to find the interval of
time ∆t as measured by F .

[3 marks]

(ii) If ∆x′ denotes the length of a rod moving along the x-axis with velocity v, find
its length ∆x as measured by F .

[3 marks]

(iii) Draw a 2-dimensional spacetime diagram of the following situation: two mirrors
are located, respectively at x = −x0 and x = x0; two rays of light are shot
from the origin at t = 0, one towards the right one towards the left. To draw
the diagram use units for which c = 1.

[4 marks]

Question 5 The metric for a particular 2-dimensional spacetime is given by

ds2 = −e2Ardt2 + dr2

where A is an arbitrary constant. Let (x1, x2) = (t, r).

(i) Compute, by the method you prefer all the Christoffel symbols Γa
bc.

[7 marks]

(ii) Using the formula

Rab = ∂cΓ
c
ab − ∂bΓc

ca − Γc
daΓd

cb + Γc
cdΓd

ab

compute the R11 component of the Ricci tensor.

[3 marks]
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SECTION B: Each question carries 25 marks. You may attempt all questions.
Except for the award of a bare pass, only marks for the best TWO questions will be
counted.

Question 6 In this question consider units for which c = 1.

(i) What is the 4-momentum, p̄, of a photon of frequency ν moving along the
positive direction of the x-axis of an inertial system of reference F? Show that
for a photon one always has that |p̄|2 = 0. What is the meaning of this result?

[5 marks]

(ii) Consider a further inertial system of reference F ′ moving with velocity v along
the x-axis of F . If p̄′ denotes the 4-momentum of the photon with respect to
F ′, give the relation between the components of p̄ and p̄′. Use this result to
show that

ν ′

ν
=

√
1− v
1 + v

,

where ν ′ is the frequency of the photon as measured by F ′.

[8 marks]

(iii) A particle of rest mass m0 moving along the x-axis with speed v decays into
two particles, each with a rest mass m0/2. Both particles continue to move
along the x-axis. Show that the new particles move with the same speed.

[12 marks]

Question 7

(i) Let Wa
b denote a (1, 1)-tensor. Give the formula for ∇cWa

b in terms of ∂c and
the Christoffel symbols Γa

bc.

[4 marks]

(ii) Show that ∇cδa
b = 0.

[4 marks]

(iii) What is the physical/geometrical meaning of the metric tensor gab?

[3 marks]

(iv) Let gab denote a metric tensor. Using ∇cgab = 0 and the result of (ii), show
that

∇cg
ab = 0

where gab denotes the contravariant metric.

[7 marks]
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(v) Let xa(λ) with λ an affine parameter, denote a curve in spacetime with tan-
gent vector va = dxa/dλ. Use the formulae for the covariant derivative of a
contravariant vector to show that the geodesic equation equation

vb∇bv
a = 0

can be rewritten as
d2xa

dλ2
+ Γa

bc
dxb

dλ

dxc

dλ
= 0.

[7 marks]

Question 8
The Riemann curvature tensor of a certain spacetime is of the form

Rabcd = K (gacgbd − gadgcb) ,

with K a constant.

(i) Show that the tensor Rabcd satisfies the identity

Rabcd +Racdb +Radbc = 0.

[6 marks]

(ii) Show that
∇eRabcd = 0

[4 marks]

(iii) Show that the corresponding Ricci tensor Rab is proportional to the metric,
and that the Ricci scalar R is a constant. [7 marks]

(iv) Show that for the above curvature tensors one has that

∇aRab −
1

2
∇bR = 0.

[3 marks]

(v) Under which conditions is a metric gab with the above curvature tensor a
solution to the vacuum Einstein field equations? Which spacetime satisfies
this condition?

[5 marks]

End of Paper
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