Main Examination period 2023 - January - Semester A

MTH5130: Number Theory

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: S.Sasaki, B. Noohi

Question 1 [15 marks]. Find an integer solution to the equation

$$
35 x+55 y+77 z=1
$$

in x, y, z. Show your working.

Question 2 [16 marks]. Are the following assertions true or false? Explain your answers.
(a) 7 is a primitive root $\bmod 11$.
(b) 25 is a quadratic residue mod 11 .
(c) 2 is a square $\bmod 9$.
(d) 17^{253} is a solution to the congruence equation $x^{2} \equiv-1 \bmod 1013$. You may assume 1013 is a prime number.

Question 3 [24 marks].

(a) Compute the continued fraction $[1 ; 1, \overline{1,2}]$. Show your working.
(b) Find an example of a good rational approximation to

$$
e=2.71828 \ldots=[2 ; 1,2,1,1,4, \ldots] .
$$

Justify your answer.
(c) Prove that if an irrational number has a purely periodic continued fraction then it is a quadratic irrational. State clearly any result you are using from lectures.

Question 4 [20 marks].

(a) Compute the continued fraction of $\sqrt{23}$. Show your working.
(b) Find the fundamental solution to $x^{2}-23 y^{2}= \pm 1$. Justify your answer. In doing so, state clearly any results you are using from lectures.
(c) Using (b), compute the 7 -th convergent to $\sqrt{23}$.

Question 5 [10 marks]. Find an integer solution to

$$
x^{2}+y^{2}=725
$$

using Hermite's algorithm.

Question 6 [15 marks]. Determine which of the following real numbers are algebraic integers. State clearly any results you are using from lectures and justify your answers.
(a) $\frac{26}{3}$.
(b) $\pi=3.1415926535 \ldots$
(c) $1+\frac{\sqrt{21}}{2}$.
(d) $\frac{-1+\sqrt{-3}}{2}$.
(e) $1+\sqrt[3]{3}$.

