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Question 1. [20 marks]

(a) Define the terms algebraic number and minimal polynomial. State the
Chinese Remainder Theorem. [6]

(b) Give an example of an algebraic integer, which is not an integer. Explain why
the number you gave has the desired properties. [3]

(c) Find all integer solutions to the system of congruences

x ≡ 1 (mod 7)
x ≡ 2 (mod 30).

Explain your working. [6]

(d) Determine the minimal polynomial of

√
7

2
− 9

2
. [5]

Question 2. [15 marks]

(a) Find the value of the continued fraction

[4; 1, 6].

Your answer should be a number of the form u + v
√

d, where u, v ∈ Q, d ∈ N. [5]

(b) Let x be an irrational number and n be a positive integer. Let cn = pn/qn be the
nth convergent of the continued fraction of x.

(i) Prove that [5]

1
qnqn+1

=

����
pn+1

qn+1
− pn

qn

���� =
����x − pn+1

qn+1

����+
����x − pn

qn

���� .

State precisely all results from the lectures you use in the proof.

(ii) Prove that
1

qnqn+1
<

1
2q2

n
+

1
2q2

n+1
. [2]

(iii) Use parts (i) and (ii) to prove that [3]
����x − pn

qn

���� <
1

2q2
n

or
����x − pn+1

qn+1

���� <
1

2q2
n+1

.
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Question 3. [15 marks]

(a) Given that √
19 = [4; 2, 1, 3, 1, 2, 8],

find the fundamental solution to

x2 − 19y2 = ±1.

Use your answer to write down all positive integer solutions to the equation
x2 − 19y2 = 1. Explain why you have found ALL solutions. [9]

(b) Given that 252 ≡ −1 (mod 313) use Hermite’s algorithm to find integers x, y
such that

x2 + y2 = 313. [6]

Question 4. [13 marks]

(a) Define Euler’s φ-function. Define the term primitive root (mod p), where p is
prime. [4]

(b) Find a primitive root (mod 29). Explain why the integer you gave has the
desired properties. [5]

(c) Find the number of primitive roots (mod 101). Explain your working. [4]

Question 5. [25 marks]

(a) Define the term quadratic residue. State Euler’s Criterion. [5]

(b) For each of the equations, find all integers strictly between 0 and 53 which are
solutions to the following equations. Use the methods developed in the lectures
to solve the equation x2 ≡ a (mod p) and explain your working.

(i) x2 ≡ 35 (mod 53) [6]

(ii) x2 ≡ −1 (mod 53) [6]

(c) Prove there are infinitely many prime numbers congruent to 1 (mod 4). [8]
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Question 6. [12 marks]

(a) State Hensel’s Lemma. [3]

(b) Use Hensel’s Lemma to find all integer solutions to the equation

x2 − 5 ≡ 0 (mod 192).

Explain your working. [9]

End of Paper.
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