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Question 1. [20 marks]

(a) Define the terms algebraic integer, quadratic integer, and transcendental
number. [6]

(b) Determine which of the following are quadratic integers. Explain which
theorems you have used. [8]

(i) 1+
√

49
2 ;

(ii)
√

3
2 −

7
2 ;

(iii)
√

5
2 +

√
−3
2 ;

(iv) 7
2 +

√
65
2 .

(c) Let D be a natural number which is not a square. Using minimal polynomials,
show that 1+

√
D

2 is an algebraic integer if and only if D ≡ 1 (mod 4). [6]

Question 2. [20 marks]

(a) What is a periodic continued fraction? Give an example of an irrational
number whose continued fraction expansion is not periodic. You do not need to
justify your answer. [4]

(b) Use the Euclidean algorithm to find a continued fraction expansion for
241
113

. [5]

(c) Determine the value of the infinite continued fraction

[1; 2, 1].

Write your answer in the form u + v
√

d, where u, v ∈ Q and d ∈ Z. [5]

(d) Find the continued fraction expansion of
√

7. [6]

Question 3. [20 marks]

(a) Given that √
29 = [5; 2, 1, 1, 2, 10],

find the fundamental solution to the equation

x2 − 29y2 = ±1.

Use your answer to write down all positive integer solutions to the equation
x2 − 29y2 = ±1. Explain why you have found ALL solutions. [8]

(b) Given that 372 ≡ −1 (mod 137) use Hermite’s algorithm to find integers x, y
such that

x2 + y2 = 137. [8]

(c) Suppose that n ≡ 3 (mod 4). Show that x2 + y2 = n has no integer solutions. [4]
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Question 4. [20 marks]

(a) Given a positive integer n and an integer x such that gcd(x, n) = 1, define the
order of x (mod n). Define the term primitive root (mod p), where p is prime. [4]

(b) Find a primitive root (mod 13). How many primitive roots (mod 13) are there? [4]

(c) Does there exist an integer n such that n4 6≡ 1 (mod 17) and n5 ≡ 1 (mod 17)?
Justify your answer by stating explicitly which theorems you use in the proof. [6]

(d) Compute ϕ(280). (Hint: 280 = 23 · 5 · 7.) [3]

(e) Show that ϕ(n) is even for n > 2. [3]

Question 5. [20 marks]

(a) Define the term quadratic residue. Define the Legendre symbol
(

a
p

)
. State the

Law of Quadratic Reciprocity. [6]

(b) Both 227 and 137 are primes. Compute
(

137
227

)
. You should clearly state any

rules you use for calculating the Legendre symbol. [7]

(c) Let p be an odd prime. Suppose that p + 2 is also prime. Show that p is a
quadratic residue (mod (p + 2)) if and only if

p ≡ ±1 (mod 8). [7]

End of Paper.
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