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Question 1. [20 marks]

(a) Define the terms

(i) algebraic number;

(ii) algebraic integer; [4]

(iii) transcendental number.

(b) Which of the following numbers are algebraic integers? Explain, stating
explicitly which theorems you use.

(i) 1+
√
11

2 ; [6]

(ii) 2
3+

√
7
;

(iii) 3+
√
45

6 .

(c) Let a be an algebraic number, and suppose that a 6= 0. Show that 1
a is an

algebraic number. [5]

(d) Give an example of an algebraic integer which is not approximable by
rationals up to order 6. Explain why the example you gave has the desired
properties. [5]

Question 2. [20 marks]

(a) Calculate the value of the infinite continued fraction [3; 4, 2, 1]. [6]

(b) You are given that
[10; 1, 1, 1, 2, 2, 1, 1, 1, 20]

is the continued fraction for
√

113. Using this, find positive integers x and y
such that x2 + y2 = 113. [6]

(c) You are given that
[9; 1, 2, 1, 18]

is the continued fraction for
√

95. Using this, find all the integer solutions of
the equation x2 − 95y2 = ±1. [8]

Question 3. [20 marks]

(a) Let p be a prime. What is a primitive root (mod p)? What is the order
(mod p) of an integer x with 1 ≤ x ≤ p− 1? [4]

(b) Find a primitive root (mod 13). [5]

(c) What are the possible orders (mod 13) of an integer x with 1 ≤ x ≤ 12? For
each possible order, find a natural number x with 1 ≤ x ≤ 12 which has
exactly that order (mod 13). [5]

(d) Let p be a prime and g a primitive root (mod p). Show that for every integer
x with 1 ≤ x ≤ p− 1, there is a natural number i with x ≡ gi (mod p). [6]
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Question 4. [20 marks]

(a) Let p be an odd prime, and let a be an integer. Define the Legendre

symbol

(
a

p

)
. [3]

(b) Calculate the value of

(
21

67

)
. You should state clearly any rules for

computing Legendre symbols that you use, but are not required to prove
them. [6]

(c) Let p be an odd prime. Show that we have

(
5

p

)
= −1 if and only if

p ≡ 2 (mod 5) or p ≡ 3 (mod 5). You should state clearly any rules for
computing Legendre symbols that you use, but are not required to prove
them. [5]

(d) Show that there are infinitely many primes congruent to 1 modulo 4. [6]

Question 5. [20 marks]

(a) What is a quadratic form over the integers? [2]

(b) In each of the following cases, state whether the quadratic form is positive
definite, negative definite, indefinite, or degenerate:

(i) 7x2 + 3xy + 4y2;

(ii) 5x2 + 4xy − 3y2. [4]

(c) Find the reduced positive definite quadratic form which is equivalent to [4]

5x2 + 2xy + y2.

(d) Show that equivalent quadratic forms have the same discriminant. [4]

(e) Write down two positive definite quadratic forms with the same discriminant,
which are not equivalent. Explain why the examples you gave have the
desired properties. [6]

End of Paper.
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