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Question 1.

(a) Define the terms

(i) algebraic number;

(ii) algebraic integer; [4]

(iii) transcendental number.

(b) Which of the following numbers are algebraic integers? Explain, stating
explicitly which theorems you use.

(i)
5 +
√

15

2
; [5]

(ii)
1

2

√
41− 3

2
.

(c) What does it mean for a positive irrational number to be approximable by
rationals to order m? [3]

(d) Is 3
√

2 approximable by rationals to order 4? Justify your answer. State
explicitly which theorems you use in the proof. [6]

Question 2.

(a) Find the continued fraction for
7 +
√

11

3
. [8]

(b) Calculate the value of the infinite continued fraction [2; 4, 1]. [8]

Question 3.

(a) You are given that
[8; 1, 1, 5, 5, 1, 1, 16]

is the continued fraction for
√

73. Using this, find positive integers x and y
such that x2 + y2 = 73. [6]

(b) You are given that
[8; 1, 1, 1, 16]

is the continued fraction for
√

75. Using this, find all the integer solutions of
the equation

x2 − 75y2 = ±1.

Explain why you have found ALL the integer solutions. [8]

(c) Let n be a positive integer which is not a square. Suppose that x, y and x′, y′

are positive integers satisfying x2 − ny2 = ±1 and (x′)2 − n(y′)2 = ±1.
Assume that x < x′.

Show that y < y′. State explicitly which theorems you use in the proof. [8]
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Question 4.

(a) Let p be a prime. What is a primitive root (mod p)? [3]

(b) Find a primitive root (mod 11). [5]

(c) Find an integer n with n5 ≡ 1 (mod 11) and n4 6≡ 1 (mod 11). Show that the
integer you have found has the required properties. [3]

(d) Does there exist an integer n with n3 ≡ 1 (mod 11) and n2 6≡ 1 (mod 11)?
Justify your answer. State explicitly which theorems you use in the proof. [5]

Question 5.

(a) Let p be an odd prime. What is a quadratic residue (mod p)? [2]

(b) Let p be an odd prime, and let a be an integer. Define the Legendre

symbol

(
a

p

)
. [3]

(c) Calculate the value of

(
18

71

)
. You should state clearly any rules for

computing Legendre symbols that you use, but are not required to prove
them. [6]

(d) Let p be an odd prime. Show that we have [5](
−1

p

)
= (−1)(p−1)/2 =

{
+1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

Question 6.

(a) What is a quadratic form over the integers? [2]

(b) Give an example of a quadratic form which is indefinite. Explain why the
example you gave has the desired property. [2]

(c) Find a reduced positive definite quadratic form which is equivalent to [4]

3x2 + 2xy + y2.

(d) What is meant by saying that an integer is represented by a quadratic form?
What can we say about the integers represented by two equivalent quadratic
forms? [4]

End of Paper.
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