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Question 1 (a) What is an algebraic number? What is an algebraic integer?
What is a transcendental number? [4]

(b) Which of the following numbers are algebraic integers? Explain, stating pre-
cisely all theorems you use.

(i)
3 +
√

5
2

+
1
5

; [4]

(ii)
1
2

√
21− 1

2
.

Question 2 (a) Use the Euclidean algorithm to find the greatest common divisor
of 263 and 108. [4]

(b) Use your working from (a) to find a continued fraction expansion of
263
108

. [4]

Question 3 (a) Let a0, a1, a2, . . . be a sequence of integers, with an > 0 for all
n ≥ 1. How is the value of the infinite continued fraction [a0; a1, a2, . . .] defined? [2]

(b) Calculate the value of the infinite continued fraction [5]

[1; 1, 2] = [1; 1, 2, 1, 2, 1, 2, . . .].

(c) Show that the value of the periodic continued fraction

[a0; a1, . . . , am, am+1, . . . , am+k]

is a quadratic number. [7]

Question 4 (a) Explain how to use the continued fraction for
√

p (where p is a
prime congruent to 1 modulo 4) to find positive integers x and y satisfying the
equation x2 + y2 = p. [4]

(b) Find the continued fraction for
√

73. [8]

(c) Using parts (a) and (b), find positive integers x and y such that x2 + y2 = 73. [4]

(d) Find all the integer solutions of the equation

x2 + y2 = 73.

Explain why you have found ALL the integer solutions. [3]

(e) Find all the integer solutions of the equation

x2 − 73y2 = ±1.

Explain why you have found ALL the integer solutions. [8]
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Question 5 (a) Let p be an odd prime. Define the Legendre symbol
(

a

p

)
for any

integer a. [3]

(b) Calculate the value of
(

51
61

)
. You should state clearly any rules for computing

Legendre symbols that you use, but are not required to prove them. [6]

(c) Let p be an odd prime. Show that
(
−3
p

)
= +1 if and only if p ≡ 1 (mod 6). [8]

(d) Prove that any prime greater than 3 is congruent to 1 or −1 modulo 6. [2]

(e) Show that there are infinitely many prime numbers p with
(
−3
p

)
= −1. [8]

Question 6 (a) What is a quadratic form over the integers? Define the discrim-
inant of a quadratic form over the integers. [2]

(b) In each of the following cases, state whether the quadratic form is positive
definite, negative definite, indefinite, or degenerate:

(i) −2x2 + 3xy − 4y2;

(ii) −5x2 − 4xy + 3y2. [2]

(c) What is meant by saying that a positive definite quadratic form is reduced?
When are two reduced positive definite quadratic forms equivalent? [2]

(d) Find a reduced positive definite quadratic form which is equivalent to

5x2 − 4xy + 2y2. [2]

(e) Find a reduced positive definite quadratic form which is equivalent to

31x2 − 10xy + y2. [2]

(f) Find an integer a such that the quadratic forms x2 + y2 and ax2 − 20xy + y2

are equivalent. Prove that the integer you have found has the desired property. [6]

End of Paper
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