Main Examination period 2023 - May/June - Semester B

MTH6127 / MTH6127P: Metric Spaces and Topology

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: M. Farber, M. Shamis

In this examination \mathbb{R} denotes the set of real numbers, \mathbb{Q} denotes the set of rational numbers and \mathbb{Z} denotes the set of integers.

Question 1 [10 marks].

(a) Show that any open set $U \subset X$ in a metric space is a union of a family of open balls $B(c ; r)$ having radii $r<0.1$.
(b) In a metric space (X, d) the metric $d: X \times X \rightarrow \mathbb{R}$ satisfies $d(x, y) \geq 0.2$ for all $x, y \in X$ with $x \neq y$. Describe the open subsets of X.

Question 2 [5 marks]. For points x, y, z in a metric space (X, d) it is known that $d(x, y)=1$ and $d(y, z)=2$. Based on this information and using general properties of metric spaces describe the possible range for $d(x, z)$. Justify your answer.

Question 3 [10 marks].

(a) When do we say that a sequence $\left\{x_{n}\right\}_{n \geqslant 1}$ of points in a metric space X converges?
(b) Give the definition of a Cauchy sequence in a metric space (X, d).
(c) Prove that a Cauchy sequence converges if it has a convergent subsequence.

Question 4 [10 marks].

(a) Let X be a metric space and let $A \subseteq X$ be a subset which is not closed. Show that A is not complete with respect to the induced metric.
(b) Which of the following subsets of \mathbb{R} are complete when considered as subspaces of \mathbb{R} with the usual metric? Briefly explain your answer.
(i) $(1, \infty)$,
(ii) $[1, \infty)$,
(iii) $\left\{n^{-2} ; n=1,2, \ldots\right\}$,
(iv) $\left\{n^{-2} ; n=1,2, \ldots\right\} \cup\{0\}$.

Question 5 [10 marks].

(a) Describe the finite complement topology on a set X. Show that this topology is Hausdorff if and only if the set X is finite.
(b) Show that any metric space equipped with the topology induced by the metric is Hausdorff.
(c) Is $(0,1]$ equipped with the topology induced from the standard topology of \mathbb{R} Hausdorff? Briefly explain your answer.

Question 6 [25 marks].

(a) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Is it possible that $f([0,1])=(1,2)$? Justify your answer.
(b) Describe a homeomorphism $\phi:(-\pi, \pi) \rightarrow(1,2)$ and its inverse.
(c) Are the intervals $(-\pi, \pi)$ and $(1,2)$ equipped with the standard metric isometric? Justify your answer.
(d) Which of the following subsets of the real line \mathbb{R} are compact; briefly explain your answer:
(i) $[-\pi, \pi]$;
(ii) $(2,5)$;
(iii) $[6, \infty)$;
(iv) \mathbb{R};
(v) $\left\{n^{-1} ; n=1,2, \ldots\right\}$.

Question 7 [10 marks].

(a) Consider the map $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{2}(x+1)$. Is this map a contraction? Justify your answer.
(b) Show that f maps the interval $(1,2]$ to itself.
(c) Is the contraction mapping theorem applicable to the restriction map $f:(1,2] \rightarrow(1,2]$? Justify your answer.
(d) Does the map $f:(1,2] \rightarrow(1,2]$ have a fixed point $x \in(1,2]$?

Question 8 [20 marks].

(a) Consider \mathbb{R}^{2} with the d_{1}-metric, i.e. $d_{1}\left(v, v^{\prime}\right)=\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|$ where $v=(x, y)$ and $v^{\prime}=\left(x^{\prime}, y^{\prime}\right)$. Is this metric space complete? Justify your answer.
(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(v)=\left(\frac{1}{2} y, \frac{1}{2}(x+1)\right)$ where $v=(x, y)$. Show that f is a contraction with respect to d_{1}-metric.
(c) Find the fixed point of f.

End of Paper.

© Queen Mary University of London (2023)

