

Main Examination period 2023 – May/June – Semester B

MTH6127 / MTH6127P: Metric Spaces and Topology Duration: 2 hours

The exam is intended to be completed within **2 hours**. However, you will have a period of **4 hours** to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be **handwritten** and should **include your student number**. Only one attempt is allowed – **once you have submitted your work, it is final**.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a **single PDF file**, and submit this file using the tool below the link to the exam;
- e-mail a copy to **maths@qmul.ac.uk** with your student number and the module code in the subject line;

Examiners: M. Farber, M. Shamis

In this examination \mathbb{R} denotes the set of real numbers, \mathbb{Q} denotes the set of rational numbers and \mathbb{Z} denotes the set of integers.

Question 1 [10 marks].

- (a) Show that any open set $U \subset X$ in a metric space is a union of a family of open balls B(c; r) having radii r < 0.1.
- (b) In a metric space (X, d) the metric $d : X \times X \to \mathbb{R}$ satisfies $d(x, y) \ge 0.2$ for all $x, y \in X$ with $x \neq y$. Describe the open subsets of X. [5]

Question 2 [5 marks]. For points x, y, z in a metric space (X, d) it is known that d(x, y) = 1 and d(y, z) = 2. Based on this information and using general properties of metric spaces describe the possible range for d(x, z). Justify your answer. [5]

Question 3 [10 marks].

- (a) When do we say that a sequence $\{x_n\}_{n\geq 1}$ of points in a metric space X converges? [2]
- (b) Give the definition of a Cauchy sequence in a metric space (X, d). [2]
- (c) Prove that a Cauchy sequence converges if it has a convergent subsequence. [6]

Question 4 [10 marks].

- (a) Let X be a metric space and let $A \subseteq X$ be a subset which is not closed. Show that A is not complete with respect to the induced metric. [2]
- (b) Which of the following subsets of \mathbb{R} are complete when considered as subspaces of \mathbb{R} with the usual metric? Briefly explain your answer.
 - (i) $(1,\infty),$ [2]
 - (ii) $[1,\infty),$ [2]
 - (iii) $\{n^{-2}; n = 1, 2, ...\},$ [2]
 - (iv) $\{n^{-2}; n = 1, 2, \dots\} \cup \{0\}.$ [2]

Question 5 [10 marks].

- (a) Describe the finite complement topology on a set X. Show that this topology is Hausdorff if and only if the set X is finite. [7]
- (b) Show that any metric space equipped with the topology induced by the metric is Hausdorff. [2]
- © Queen Mary University of London (2023)

Continue to next page

[5]

MTH6127 / MTH6127P (2023)

(c) Is (0,1] equipped with the topology induced from the standard topology of \mathbb{R} Hausdorff? Briefly explain your answer.

Question 6 [25 marks].

- (a) Let $f : [0,1] \to \mathbb{R}$ be a continuous function. Is it possible that f([0,1]) = (1,2)? Justify your answer. [6]
- (b) Describe a homeomorphism $\phi: (-\pi, \pi) \to (1, 2)$ and its inverse. [4]
- (c) Are the intervals $(-\pi, \pi)$ and (1, 2) equipped with the standard metric isometric? Justify your answer. [6]
- (d) Which of the following subsets of the real line $\mathbb R$ are compact; briefly explain your answer:
 - (i) $[-\pi,\pi];$ [1]
 - (ii) (2,5); [2]
 - (iii) $[6,\infty);$ [2]
 - (iv) \mathbb{R} ; [2]
 - (v) $\{n^{-1}; n = 1, 2, ...\}.$ [2]

Question 7 [10 marks].

(a) Consider the map $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{1}{2}(x+1)$. Is this map a contraction?	•
Justify your answer.	[3]
(b) Show that f maps the interval $(1, 2]$ to itself.	[1]

- (c) Is the contraction mapping theorem applicable to the restriction map $f: (1,2] \to (1,2]$? Justify your answer. [3]
- (d) Does the map $f: (1,2] \to (1,2]$ have a fixed point $x \in (1,2]$? [3]

Question 8 [20 marks].

- (a) Consider \mathbb{R}^2 with the d_1 -metric, i.e. $d_1(v, v') = |x x'| + |y y'|$ where v = (x, y)and v' = (x', y'). Is this metric space complete? Justify your answer. [4]
- (b) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(v) = (\frac{1}{2}y, \frac{1}{2}(x+1))$ where v = (x, y). Show that f is a contraction with respect to d_1 -metric. [10]
- (c) Find the fixed point of f.

End of Paper.

© Queen Mary University of London (2023)

Page 3

[1]

[6]