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In this examination R stands for the set of real numbers, Q stands for the set of rational
numbers, and N := {1, 2, 3, . . .} stands for the set of natural numbers.

Section A
You should attempt both questions in this section.

Question 1. [20 marks] Let V be a real vector space.

(a) Define what is meant by a norm �·� on V and moreover what is meant by a
scalar product �· , ·� on V . [5]

(b) Prove that every scalar product on V induces a norm on V . (You are allowed
to assume that every scalar product satisfies the Cauchy-Schwarz inequality
�x, y�2 ≤ �x, x��y, y�, as shown in the lectures.) [5]

(c) Prove that any norm on V that is induced by a scalar product as in part (b)
satisfies the parallelogram law

�u+ v�2 + �u− v�2 = 2�u�2 + 2�v�2 ∀u, v ∈ V. [5]

(d) Let V = C0([0, 1]) denote the vector space of continuous real-valued functions
on [0, 1]. Prove that the norm

�f�L1 :=

� 1

0

|f(x)| dx

is not induced by a scalar product. [5]

Question 2. [20 marks] Let X denote a set.

(a) Define what is meant by a topology τ on X. [3]

(b) Define what is meant by a compact subset of the topological space (X, τ). [3]

For the rest of this question, we consider X = R.

(c) Prove that the collection of sets

τ1 := {A ⊆ R : A = ∅ or Ac is a countable set}

defines a topology on R. Here Ac = R \ A is the complement of A. (You may
use without proof that the union of finitely many countable sets is countable.) [7]

(d) For τ1 as in part (c), prove that [0, 1] is not compact in (R, τ1). [7]
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Section B
You may attempt as many questions as you wish in this section. Except for the award
of a bare pass, only the best TWO questions answered in this section will be counted.

Question 3. [30 marks] Let (X, τX) and (Y, τY ) be two topological spaces and
let h : X → Y be a function between them.

(a) Define what it means for a sequence (xn)
∞
n=1 in X to converge to x ∈ X. [3]

(b) Let X = B((0, 1)) be the set of bounded real-valued functions on (0, 1) with
the metric d(f, g) := supx∈(0,1)|f(x)− g(x)| and its induced topology τX = τd.
For n ∈ N, set

fn(x) =
xn

1 + n
and gn(x) =

cos(2π
x
)

1 + nx
.

(i) Prove that the sequence (fn)
∞
n=1 converges in (X, τX). [7]

(ii) Prove that the sequence (gn)
∞
n=1 does not converge in (X, τX). [7]

(c) Define what it means for the function h : X → Y to be sequentially
continuous. [3]

(d) Let S ⊆ Y . Define what it means for S to be sequentially open. [3]

(e) Prove that if h : X → Y is sequentially continuous and S ⊆ Y is sequentially
open, then h−1(S) ⊆ X is sequentially open. [7]

Question 4. [30 marks] Let X be a set.

(a) Define what it means for a topology τ on X to be metrisable. [3]

(b) Prove that if X is finite, only the discrete topology τ = P(X) is metrisable. [7]

(c) Define what it means for a topology τ on X to be Hausdorff. [3]

(d) Let (X, τ) be a Hausdorff topological space. Prove:

For all x ∈ X :
�

{F ⊆ X : x ∈ F, F c ∈ τ} = {x}. (�) [7]

(e) Find an example of a topological space (X, τ) which also satisfies (�) but
which is not Hausdorff. Prove that your example indeed has the required
properties. [10]
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Question 5. [30 marks] Let (X, d) be a metric space.

(a) Define what is meant by an open ball Br(x) in (X, d) and moreover what is
meant by an open set Ω ⊆ X. [3]

(b) Let S be a subset of (X, d). Define what is meant by the interior of S
(denoted int(S)) and by the closure of S (denoted cl(S)). [4]

(c) Let T be a subset of (X, d). Define what it means for T to be connected. [3]

For the rest of this question, consider X = R with standard metric d(x, y) := |x− y|.

(d) Show directly from the definition, not using any other result from the lectures,
that (5,∞) \ N is open in (R, d). [5]

(e) Let
A := {0} ∪

�
[1, 2) \Q

�
∪
�
(5,∞) \ N

�
.

Without justification, find the following sets

B := int(A), C := cl(int(A)), D := int(cl(int(A))),

E := cl(A), F := int(cl(A)), G := cl(int(cl(A))).

(Hint: All of the seven sets A, B, C, D, E, F , and G are different.) [10]

(f) Which of the seven sets A, B, C, D, E, F , and G from part (e) are connected?
Justify your answer. (You may use any result from the lectures provided you
make it clear what you are using.) [5]

End of Paper.
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