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In this examination R stands for the set of real numbers and Q stands for the set of
rational numbers.

Section A

Question 1. [10 marks] Let V be a real vector space.

(a) Define what is meant by a norm on V . [2]

(b) Define what is meant by a metric on V . [2]

(c) Prove that every norm on V induces a metric on V . [6]

Question 2. [10 marks] Let (X, d) be a metric space.

(a) Define what is meant by an open ball Br(x) in (X, d). [2]

(b) Let A ⊆ X be a subset. Define what it means for A to be an open set. [2]

(c) Prove that an open ball Br(x) is indeed an open set. [6]

Question 3. [10 marks] Let (X, τX) and (Y, τY ) be two topological spaces and
let f : X → Y be a function.

(a) Define what it means for the function f : X → Y to be continuous. [2]

(b) Define what it means for X to be connected. [2]

(c) Prove that if f : X → Y is continuous and surjective and X is connected,
then Y is connected. [6]

Question 4. [10 marks] In a metric space (X, d), we say the sequence (xn)∞n=1

converges to x ∈ X if and only if

∀ε > 0 ∃N ∈ N ∀n > N : xn ∈ Bε(x). (1)

(a) Define what it means for a sequence (xn)∞n=1 in a topological space (X, τ) to
converge to x ∈ X. [2]

(b) Prove that if the topology τ is induced by a metric d, then the definition you
wrote down in part (a) is equivalent to the definition given in (1). [8]
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Section B

Question 5. [30 marks] Let X be an infinite set.

(a) Define what is meant by a topology on X. [2]

(b) Prove that the collection of sets τ1 := {A ⊆ X : A = ∅ or Ac is a finite set}
defines a topology on X. Here Ac = X \ A is the complement of A. [6]

(c) Prove that the collection of sets τ2 := {A ⊆ X : A = X or A is a finite set}
does not define a topology on X. [6]

(d) Define what it means for a topology τ on X to be Hausdorff. [2]

(e) Prove that the topology τ1 given in part (b) is not Hausdorff. [6]

(f) Prove that in every Hausdorff topological space (X, τ), any set containing
exactly one point is closed. [8]

Question 6. [30 marks]

(a) Let (X, τ) be a topological space and A ⊆ X a subset. Define what is meant by
the interior of A (denoted int(A)) and by the closure of A (denoted cl(A)). [2]

(b) Let X = R be endowed with the standard topology induced by the metric
d(x, y) = |x− y| and let A := (0, 1) ∪ (1, 2) ∪ {3} ∪ ([4,∞) ∩Q). Without
justification, find the following sets

B := int(A), C := cl(int(A)), D := int(cl(int(A))),

E := cl(A), F := int(cl(A)), G := cl(int(cl(A))).

(Hint: All of the seven sets A, B, C, D, E, F , and G are different.) [12]

(c) Define what is meant by a compact subset of a topological space (X, τ). [2]

(d) Exactly one of the seven sets A, B, C, D, E, F , and G from part (b) is
compact. Which one? Justify your answer. (You may use any result from the
lectures provided you make it clear what you are using.) [6]

(e) Prove that the union of finitely many compact sets in a topological space
(X, τ) is also compact. [8]
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Question 7. [30 marks]

(a) Define what is meant by a Cauchy sequence in a metric space (X, d). [2]

(b) Let Z = R and dZ(x, y) := |e−x − e−y|. Prove that the sequence (xn)∞n=1 given
by xn = n is a Cauchy sequence in (Z, dZ). (You do not need to prove that dZ
is indeed a metric on Z.) [6]

(c) Is the space (Z, dZ) given in part (b) complete? Justify your answer. [6]

(d) Given a metric space (X, d), when do we say that a map f : X → X is a
contraction mapping? [2]

(e) Prove that every contraction mapping f : X → X is continuous. [6]

(f) Let (X, d) be a complete metric space and f : X → X a map for which there
exists k ∈ N such that fk is a contraction mapping. Prove that f has a unique
fixed point. (You are allowed to use Banach’s Fixed Point Theorem without
proof.) [8]

End of Paper.
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