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In this examination the symbol R denotes the set of real numbers.

Question 1. [6 marks] Let X be a set and let d : X×X → R be a function.

(a) State the three properties (axioms) that d must satisfy to be a metric on X . [2]

(b) Let X be a set and let d : X×X → R be given by

d(x,y) =


0, if x = y,

1, if x 6= y.

Prove that d is a metric on X . [4]

Question 2. [20 marks]

(a) Let d : R×R→ R be given by

d(x,y) = |x− y|

for x,y ∈ R. Prove that d is a metric on R. [4]

(b) Let d : X×X → R be a metric on X . Define d′ : X×X → R by

d′(x,y) =
√

d(x,y).

Prove that d′ is a metric on X . [6]

Hint: You may use the inequality
√

a+b 6
√

a+
√

b where a > 0 and b > 0.

(c) Is the function d′ : R×R→ R,

d′(x,y) = |x− y|1/4, x,y ∈ R

a metric on the real line? Justify your answer. [5]

Hint: You may use the result of Question 2, part (b).

(d) Let d̃ : R×R→ R be given by

d̃(x,y) = |x− y|2, x,y ∈ R.

Is d̃ a metric on the real line? Justify your answer. [5]

Hint: Compute d̃(0,1), d̃(1,2) and d̃(0,2).
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Question 3. [20 marks]

(a) When do we say that a sequence of points {xn} in a metric space (X ,d)
converges? [2]

(b) Give the definition of a Cauchy sequence in a metric space (X ,d). Show
that any convergent sequence is a Cauchy sequence. [4]

(c) Define what is meant for a metric space (X ,d) to be complete. Give an
example of a metric space which is not complete. [4]

(d) Let X be a set and let d : X×X → R be given by

d(x,y) =


0, if x = y,

1, if x 6= y.

Is (X ,d) complete? Justify your answer. [4]

(e) Which of the following subsets of R are complete when considered as
subspaces of R equipped with the usual metric? Briefly explain your answer.

(i) {n−2;n = 1,2, . . .}, [3]

(ii) {n−2;n = 1,2, . . .}∪{0}. [3]

Question 4. [10 marks]

(a) Define what it means for a topological space X to be Hausdorff? [2]

(b) Give an example of a topological space which is not Hausdorff. [2]

(c) Give an example of a sequence of points {xn} in a topological space X
converging to several distinct points. [3]

(d) Show that in a Hausdorff topological space X a sequence of points {xn} can
converge to at most one point. [3]
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Question 5. [26 marks]

(a) Define what it means that a topological space is compact? [3]

(b) Prove that any compact subset A⊆ X of a metric space (X ,d) is bounded,
i.e. there exists N > 0 such that d(x,y)6 N for all x,y ∈ A. [5]

(c) Prove that any compact subset of a Hausdorff topological space is closed. [5]

(d) State the criterion of compactness for subsets of the Euclidean space Rn. [3]

(e) Which of the following subsets of the real line R are compact? Briefly
explain your answer.

(i) [0,1]; [2]

(ii) (0,1); [2]

(iii) [0,∞); [2]

(iv) R; [2]

(v) {n−1;n = 1,2, . . .}. [2]

Question 6. [18 marks]

(a) Let (X ,d) be a metric space. Define what it means that a mapping T : X → X
is a contraction? [3]

(b) State the contraction mapping theorem. No proof is required. [3]

(c) State whether the space of continuous functions C[a,b] with the sup-metric is
complete. No proof is required. [1]

(d) Consider the map
T : C[0,1/2]→C[0,1/2]

given by the formula

T ( f )(t) = t f (t)+ t, f ∈C[0,1/2], t ∈ [0,1/2].

Prove that T is a contraction mapping. [6]

(e) Find f ∈C[0,1/2] such that T ( f ) = f . [5]

End of Paper.
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