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In this examination R stands for the set of real numbers, Q stands for the set of
rational numbers and Z stands for the set of integers.

Section A: Each question carries 10 marks.

Question 1.

(a) Give the definition of a metric space (X, d). [2]

(b) Explain what it means for a subset U ⊆ X in a metric space to be open. [2]

(c) Show that any open set U ⊂ X in a metric space is a union of a family of
open balls B(c, r) having radii r < 0.01. [4]

(d) Can we replace the number 0.01 by 0.001 in part (c)? [2]

Question 2.

(a) When do we say that a sequence {xn}n>1 of points in a metric space X
converges to a point x0 ∈ X? [2]

(b) When do we say that a sequence {xn}n>1 of points in a topological space X
converges to a point x0 ∈ X? [2]

(c) Let X be a metric space. Is it possible that a sequence of points {xn}n>1,
xn ∈ X converges to two distinct points x0, x

′
0 ∈ X , x0 6= x′0? Justify your

answer. [2]

(d) Consider X = R with the finite-complement topology (i.e. when open
subsets are complements of the finite subsets). Consider the sequence
xn = n ∈ X and find all points x0 ∈ X such that the sequence {xn}n>1

converges to x0. Justify your answer. [4]
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Question 3.

(a) Explain what is meant for a metric space (X, d) to be complete and give an
example of a metric space which is not complete. Justify your answer. [2]

(b) Let X be a metric space and let A ⊆ X be a subset which is not closed.
Show that A is not complete with respect to the induced metric. [2]

(c) Which of the following subsets of R are complete when considered as
subspaces of R with the usual metric? Briefly justify your answer.

(i) {2n; n = 1, 2, . . . }, [2]

(ii) {2−n; n = 1, 2, . . . }, [2]

(iii) {2−n; n = 1, 2, . . . } ∪ {0}. [2]

Question 4.

(a) Give the definition of a topological space. [3]

(b) When do we say that a topological space is Hausdorff? [2]

(c) Give an example of a topological space which is not Hausdorff. [3]

(d) Show that any metric space with the topology induced by the metric is
Hausdorff. [2]

Section B: Each question carries 30 marks.

Question 5.

(a) When do we say that a map f : X → Y between topological spaces is
continuous? [3]

(b) When do we say that a subset of a topological space is closed? [3]

(c) Show that a map f : X → Y between topological spaces is continuous if the
inverse image f−1(F ) ⊆ X of any closed set F ⊂ Y is closed. [4]

(d) Let f : X → Y be a continuous map between topological spaces. Assume
that {xn}n>1 is a sequence of points xn ∈ X which converges to x0 ∈ X .
Prove that the sequence {f(xn)}n>1 converges to f(x0) in Y . [8]

(e) When do we say that two topological spaces are homeomorphic? [4]

(f) Give an example of two homeomorphic metric spaces X and Y such that X
is complete and Y is not complete. Justify your answer. [8]

c© Queen Mary, University of London (2016) Turn Over



Page 4 MTH6127 / MTH6127P (2016)

Question 6.

(a) What is meant by an open cover of a topological space? [2]

(b) When do we say that a topological space is compact? [3]

(c) Which of the following subsets of the real line R are compact? Briefly justify
your answer:

(i) [2, 3]; [3]

(ii) (2, 3); [3]

(iii) [2,∞); [3]

(iv) R; [3]

(v) {n−3;n = 1, 2, . . . }. [3]

(d) Prove that any compact subset of a Hausdorff topological space is closed. [10]

Question 7.

(a) Let (X, d) be a metric space. When do we say that a mapping f : X → X is
a contraction? [4]

(b) State the contraction mapping theorem. [5]

(c) Consider R2 with the d1-metric, i.e. d1(v, v′) = |x− x′|+ |y − y′| where
v = (x, y) and v′ = (x′, y′). Is this metric space complete? Justify your
answer. [5]

(d) Let f : R2 → R2 be given by f(v) = (1
3
y, 1

3
(x+1)), where v = (x, y). Show

that f is a contraction with respect to the d1-metric. [10]

(e) Find the fixed point of f . [6]

End of Paper.
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