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In this examination, N = {1, 2, 3, . . .} stands for the set of natural numbers, Z
stands for the set of integers, Q stands for the set of rational numbers, and R
stands for the set of real numbers.

Section A: Each question carries 10 marks. You should
attempt ALL FOUR questions.

Question 1
Let X be a set and let d : X ×X → R be a function.

(a) State the three axioms that d must satisfy in order to be a metric on X. [2]

(b) Let d be a metric on X and define σ : X×X → R by σ(x, y) = +
√
d(x, y)

for all x, y ∈ X. Prove that (X, σ) is a metric space. [4]

(c) Let X be a set, and a > 0 a fixed real constant. Prove that the function
d : X ×X → R.

d(x, y) =

{
a if x 6= y;
0 if x = y,

is a metric on X. [4]

Question 2
Let (X, d) be a metric space. Suppose that A ⊆ X.

(a) What does it mean to say a point x ∈ X is not an accumulation point
of A? [3]

(b) Suppose that A and B are subsets of X and suppose that x is not an
accumulation point of A and not an accumulation point of B. Working
directly from the definition, prove that x is not an accumulation point of
A ∪B. [7]

Question 3

(a) Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be a
function. Give two (equivalent but different) definitions for f to be con-
tinuous. [4]

(b) Consider the metric spaces (R3, d1) and (R, d1), where d1 is the Manhat-
tan metric in each case. Using one of the definitions from (a), prove that
the function f : R3 → R where f(x, y, z) = x+ 3y − z is continuous. [6]
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Question 4

(a) Let (fn) be a sequence of functions between two metric spaces (X, dX)
and (Y, dY ). Define what it means for the sequence (fn) to converge
pointwise to a function f : X → Y . [2]

(b) For each of the following sequences (fn) of functions in C[0,∞), the metric
space of real-valued continuous functions f : [0,∞) → R with the sup
metric, decide whether the sequence converges pointwise to a function
f in either C[0,∞), or in the corresponding space of bounded functions
B[0,∞). If the sequence fn converges pointwise to f , determine whether
the sequence converges to f uniformly.

(i) fn(x) = e−nx2
. [4]

(ii) fn(x) = xe−nx2
. [4]

State any theorems that you use.
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Section B: Each question carries 30 marks. You may
attempt all questions. Except for the award of a bare
pass, only marks for the best TWO questions will be
counted.

Question 5

(a) What is meant by x ∈ U being an interior point of U ⊆ X in the metric
space (X, d)? Prove that U is open iff int(U) = U . [8]

(b) Suppose that X is a set with a metric given by

dX(x1, x2) =

{
1 if x1 6= x2;
0 if x1 = x2.

Let also (Y, dY ) be an arbitrary metric space. Show that every singleton
set {x} ⊆ X is an open set of (X, d). Hence, or otherwise, show that
every subset of X is an open set, stating clearly any results that you
use. Explain why every function f : X → Y is continuous, stating the
definitions and properties needed. [8]

(c) Let f : R→ R be defined by

f(x) =

{
0 if x ≤ 0;
x+ 1 if x > 0.

Describe the inverse image S = f−1((−∞, 1/2)). Is the set S open in
R with the Euclidean metric? What does your answer imply about the
continuity of f? [8]

(d) What does it mean to say that a set A ⊆ X in the metric space (X, d)
is path connected? Show that the subset A = { (x, sin(1/x)) |x ∈ R+} of
R2 is path-connected. [6]
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Question 6
Let C be the set of all continuous real-valued functions on the interval [0, 1

2
].

(a) Give the definition of the uniform metric d (also called the sup metric)
on C. Explain why the sup metric can be replaced by the max metric. [8]

(b) Let T : C → C, be defined by f 7→ Tf : [0, 1
2
]→ R where

(Tf)(t) = t(f(t) + 1), for all t ∈ [0,
1

2
].

Show that T : C → C defined by f 7→ Tf , for all f ∈ C, is a contraction
mapping on (C, d) by considering d(Tf, Tg), f, g ∈ C. [10]

(c) What property of the space (C, d) ensures that the Contraction Mapping
Theorem can be applied, given that T is a contraction? (You are not
asked to show that C has this property.) [6]

(d) In view of Part (d), the Contraction Mapping Theorem can indeed be
applied to deduce that there is a unique f ∈ C such that Tf(t) = f(t)
for t ∈ [0, 1

2
]. What is this f? [6]

Question 7

(a) Explain what it means for a subset K of a metric space (X, d) to be
compact. [6]

(b) From first principles — i.e., directly from the definition you gave in part
(a) — prove that the following subsets of R are not compact (with the
usual metric).

(i) [0,∞), [3]

(ii) [0, 1). [3]

(c) Prove that any closed subset of a compact metric space is compact. [8]

(d) Let K,L be compact subsets of a metric space. Prove that K ∪ L is
compact. [10]

End of Paper
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