Main Examination period 2017
MTH6120
Further Topics in Mathematical Finance
Duration: 2 hours

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator.

## You should attempt ALL questions. Marks available are shown next to the questions.

Calculators are not permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Complete all rough work in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately.

It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms, it shall be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

Exam papers must not be removed from the examination room.

Examiners: Dr. S. Sarfo

## Question 1. [25 marks]

(a) An investor has the opportunity to choose among banks $\mathrm{A}, \mathrm{B}$ and C to deposit $£ 1000$ for 6 months. Each bank offers a different time-dependent interest rate.

Bank A offers to pay continuous interest on the savings with the time dependent interest rate $r_{A}(t)=(1+\sin (\pi t)) / 100$,
Bank B offers $r_{B}(t)=\exp (t / 10) / 80$,
and bank C with the constant rate $r_{c}(t)=1 / 68$ where $t$ denotes time in units of years in all cases.
Which bank should the investor choose in order to maximise the amount of money in her account? Justify your answer.
(b) (i) State the forward price $F_{T}$ at time $T$ of an asset currently traded at $S_{0}$, if the market offers a continuously compounded interest rate $r$ ?
(ii) state the Call-Put parity formula.
(iii) Consider a European call option and a European put option on a non-dividend-paying stock. You are given the current price of the stock as $£ 60$ and that the call option currently sells for $£ 0.15$ more than the put option. Both the call option and put option will expire in 4 years and both the call option and put option have a strike price of $£ 70$. Calculate the continuously compounded risk-free interest rate.
(c) Give the criteria for a function $u(x)$ to be a utility function.

Show whether or not the each of the following functions satisfy the utility criteria and if so give the range.
(i) $u(x)=17+x+\log (x+a)$
(ii) $u(x)=3-e^{-b x}$

## Question 2. [25 marks]

(a) (i) State the formula of the capital asset pricing model, CAPM.
(ii) Explain the meaning of systemic risk and idiosyncratic risk in CAPM.
(b) Derive the variance $\operatorname{Var}\left(R_{i}\right)$ of the return of an investment $i$ under the CAPM?
(c) Consider two securities with different expectations of their rate of returns $r_{1}, r_{2}$ and different variances $v_{1}^{2}, v_{2}^{2}$. Suppose that an investor has a utility function $u(x)=1-\mathrm{e}^{(a-b x)}$ where $a$ and $b$ are constants with $b>0$.
Derive the formulas for the optimal portfolio weights $\left(w_{1}, w_{2}\right)$ invested in the two assets for general parameters $a$ and $b>0$.
(d) Under the assumptions of the CAPM, suppose that the current risk-free interest rate is $6 \%$ and that the expected value and standard deviation of the market rate of return are $10 \%$ and $20 \%$ respectively. If the covariance of the rate of return of a given stock and the market's rate of return is 0.05 , what is the expected rate of return of that stock? (Assume the investment period is one year).

## Question 3. [25 marks]

(a) State any 3 differences between a futures contract and an option contract.
(b) Briefly explain what each of the following sensitivity values mean assuming a call option:
(i) Delta $=0.522$
(ii) $\mathrm{Rho}=0.0891$
(c) Consider a European call option with a strike price of $£ 60$ which costs $£ 10$. Draw a graph illustrating the net payoff of the option for stock prices in the interval $[0,100]$, ignoring the time value of money.
(d) Why are financial assets better modelled by Geometric Brownian Motion than by Brownian Motion?
(e) Describe the relationship between the no arbitrage principle of financial markets with the risk-free interest.
(f) If a share of a security is currently traded at $£ 31$, a three-month European call option is $£ 3$, with a strike price of $£ 31$ and the risk-free interest rate is $10 \%$
(i) What is the arbitrage-free European put option price for the security?
(ii) If the European put option price for the security were $£ 3$, what arbitrage strategy will be opened to an investor?

## Question 4. [25 marks]

(a) Define the following terms:
(i) Zero coupon bond
(ii) Yield to maturity.
(b) Define and state the formula for effective duration and convexity of a cashflow $A(r)$ taking place at time $T$, where $r$ is the interest rate. Assume that interest rate is continuously compounded.
(c) Consider a 5 year bond with a face value of $\$ 100$ that pays an annual coupon of $8 \%$. Assume spot rates are flat at $5 \%$
Find the bond's price and duration.
(d) (i) Write down the three conditions for the Redington's immunisation.
(ii) Briefly explain any two limitations of the classical immunisation theory.
(e) Consider a series of annual investments, each of amount 1, at the beginning of years $1,2, \ldots, n$.

At the end of year $n$ the value $A_{n}$ of this cash flow under random interest rates can be written as the recurrence relation

$$
A_{n}=\left(1+r_{n}\right)\left(1+A_{n-1}\right)
$$

where $r_{k}$ is the random interest rate of the $k$ th year, with mean $\mu$ and variance $\gamma^{2}$, for all $1 \leq k \leq n$ and where $r_{1}, r_{2}, \ldots, r_{n}$ are independent.
Derive recurrence relations for the mean $\mathbb{E}\left(A_{n}\right)$ and the second moment $\mathbb{E}\left(A_{n}^{2}\right)$.

