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WRITE CLEARLY AND LEGIBLY

Question 1 (25 marks).

(a) Explain what the effective rate or Annual Percentage Rate (APR) is and why
is it used. [5]

(b) Calculate the APR corresponding to an annualised semi-annual interest rate
r. Is the APR larger or smaller that r? [5]

(c) We place £1,000 in a deposit which pays a 5% continuous interest rate. How
long will it take for the deposit to grow to £1,500?

Hint: You may use the approximation ln(x) ∼ (x− 1)− 1
2
(x− 1)2. [5]

(d) Imagine you require to receive three payments of £10,000: one now, one in
one year and one in two years. You want to fund this with payments of an
amount A in the following 10 years. Schematically:

Now

£10,000

1Y

£10,000

2Y

£10,000

3Y

£A

4Y

£A

· · · 10Y

£A

11Y

£A

12Y

£A

10 payments

Assuming the one year interest rate is r what should A be?

Hint: Check page 5 for calculation of geometric sums. [5]

(e) FindA if there are infinitely many payments made instead of just 10 in section
(d) (you may wish to assume r > 0 if needed).

Calculate A in the case r = 1%.

Hint: Check page 5 for calculation of geometric series. [5]
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Question 2 (25 marks).

(a) Explain what Geometric Brownian Motion is. [5]

(b) Why are financial assets better modelled by Geometric Brownian Motion than
by Brownian Motion? [5]

(c) Let a, b ∈ R. Show that if X ∼ N (0, 1) then

E
(
ea+bX

)
= ea+b2/2.

Hint: Write the expectation above as an integral involving the pdf of X , and
use completion of squares: a + bx− x2

2
= a + b2

2
− (x−b)2

2
. Check page 6 for

formula of density of a normal distribution function. [5]

(d) Derive from the expression above the expectation of Geometric Brownian Mo-
tion. [5]

(e) What does Risk Neutral Geometric Brownian Motion mean? [5]

Question 3 (25 marks). A participating forward with expiry T and strike K is a
contract whereby:

• You have to buy A units of the asset if the asset value at expiry is above K.

• You have to buy B units of the asset if the asset value at expiry is below K.

Assume A, B > 0 for simplicity.

(a) Show that the payoff is:

Payoff =

{
A(S −K) if S ≤ K

B(S −K) if S > K,

and plot a graph of this function. [6]

(b) Show that a participating forward is equal to a combination of calls and puts.
Discuss how to price a participating forward.

Hint: Show that the payoff can also be written as α (S −K)+ + β (K − S)+
for certain α and β. [6]

(c) Calculate the price of a participating forward in the case K is equal to the
forward rate, F . Simplify the result as much as possible.

Hint: See page 5 for the Black–Scholes pricing formulæ. [7]

(d) Explain what put-call parity is and how it is proved. [6]
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Question 4 (25 marks).

(a) Explain what log-return means and how it relates to the usual return. [5]

(b) Explain what a utility function is. [5]

(c) Explain what a risk averse utility function is and provide an example. [5]

(d) An investor is considering placing a fraction, α, of their capital in a risky
investment that either results in their investment doubling with probability p
or in it being wiped out with probability q = 1 − p. The rest of the capital is
left uninvested. We assume interest rates are zero.

If the risk preferences of the investor are defined by the utility function u(x) =
1− exp(−βx), what fraction of their capital should they invest? [10]

End of Paper—An appendix of 2 pages follows.
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The Black Scholes Formula
The price of a European call option with strike K and years to expiry T is

Call = e−rT (FN(d1)−KN(d2))

d1 =
ln(F/K)

σ
√
T

+
1

2
σ2
√
T

d2 =
ln(F/K)

σ
√
T
− 1

2
σ2
√
T

where F = erTS is the forward rate, r the interest rate, S the current value of the
asset, and σ its volatility.
N(x) is the standard normal cumulative distribution function.
The price of a European put option with strike K and years to expiry T is

Put = e−rT (−FN(−d1) +KN(−d2))

where F , d1 and d2 are defined as above.

The Black Scholes Formula (last year’s version)
The price of a European call option with strike K and years to expiry T is

C = S0φ(ω)−Ke−rTφ(ω − σ
√
T )

ω =
rT + 1

2
σ2t− log K

S0

σ
√
T

where S0 is the current share price, r the interest rate, and σ its volatility.
φ(x) is the standard normal cumulative distribution function.
The price of a European put option with strike K and years to expiry T is

P = −S0φ(−ω) +Ke−rTφ(−ω + σ
√
T )

where ω is defined as above.

Geometric sum
For integers a ≤ b, we have:

xa + xa+1 + · · ·+ xb =
xa − xb+1

1− x
.

If |x| < 1, then taking limb→∞ in the result above yields the geometric series:

xa + xa+1 + · · · =
∞∑
n=a

xn =
xa

1− x
.
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Normal density function
The probability density function of a standard normal random variable,X ∼ N (0, 1),
is:

pdfX(x) =
1√
2π

e−x
2/2.

End of Appendix.
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