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Question 1

(a) Explain what the word “arbitrage” means. Why is the concept of arbitrage important
in the context of mathematical finance?

[4 marks]

(b) Write down the definition of geometric Brownian motion. What is the condition for
risk-neutral geometric Brownian motion?

[6 marks]

(c) Assume that X is a Gaussian random variable with mean 0 and variance σ2. Use
the rule for the transformation of probability density functions to show that X can be
expressed as

X = σ Z,

where Z is a Gaussian random variable with mean 0 and variance 1.

[5 marks]

(d) Consider a financial contract, which has the random payoff g(S(t2)) at the time t2,
where g : R → R is a function and S(t) a risk-neutral stochastic process. Give an
expression for the price of the financial contract at a time t1 < t2 under the condition
of no-arbitrage and continuous compounding with a constant nominal interest rate r.
Give reasons for your expression.

[5 marks]

(e) Consider a European (K, t) put option whose return at expiration time t is capped by
the amount B > 0. That is, the payoff at time t is given by

min((K − S(t))+, B).

Show that the price today of such an option can be expressed in terms of today’s prices
of two plain (uncapped) options.

[5 marks]

Question 2

(a) Suppose you know the price of a European put option with a certain strike price and
expiration time. You also know the current price of the underlying share and the nom-
inal interest rate. How can you determine the price of a European call option with the
same strike price and expiration time?

[4 marks]

(b) Explain the difference between a European call option and an American call option.
Does the difference matter in practice?

[3 marks]
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(c) State and prove the generalized law of one price.

[4 marks]

(d) Consider a put option with strike price K and expiration time t on an index I(t) =∑n
j=1wjSj(t). Show that the price PI(K, t) of this index put option is always smaller

than or equal to the weighted sum of put options on the individual shares Pj(Kj, t):

PI(K, t) ≤
n∑

j=1

wjPj(Kj, t),

where the strike price K is given by K =
∑n

j=1wjKj .

[6 marks]

(e) Consider the random variable

F (t) =

N(t)∏
i=1

Yi,

where N(t) is a Poisson process with rate parameter λ and the Yi are identically and
independently distributed Gaussian random variables with mean µ and variance σ2.
Calculate the second moment 〈F 2(t)〉.

[8 marks]

Question 3

(a) Consider the function u(x) = log(1 + bx2) for x ≥ 0 and b > 0. Is u(x) suitable as a
utility function? Give reasons.

[4 marks]

(b) Consider the utility function u(x) = 1 − e−bx with b > 0. Show that maximizing the
expected utility 〈u(W )〉 for a Gaussian random variableW is equivalent to maximizing

b 〈W 〉 − 1

2
b2Var(W ).

[5 marks]

(c) Four different investments have the same expected values of the rate of return but dif-
ferent variances v2j = 1

j2
, where j = 1, 2, 3, 4. The investments are uncorrelated with

each other. Construct the optimal portfolio if you have a total capital of w to invest.

[5 marks]

(d) Using mathematical notation, explain what the knapsack optimisation problem is. (You
do not need to discuss how to solve it.)

[4 marks]
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(e) Find the optimum investment (x1, x2) if a total amount x1 + x2 = 10 is to be invested
between two projects having return functions f1(x) = log(x + 3) and f2(x) = 2

√
x,

assuming that x1 and x2 take positive values which are not necessarily integers. Prove
that you have indeed found a maximum in the total return.

[7 marks]

Question 4

(a) Explain the payment structure of a bond. Write down an equation for the price of a
bond with face value F and annual coupon payments C, given the yield-to-maturity r.

[5 marks]

(b) Explain what the spot rate curve is. Explain how you can determine the spot rate curve
from the prices of unit zero coupon bonds with different maturities.

[5 marks]

(c) Consider a series of monthly payments {C1, C2, ...}, made at the end of each month
over n years. Assume a constant nominal interest rate r and continuous compounding.
Calculate the present value, the effective duration and the convexity of the cash flows.
How does the present value change when the interest rate r increases?

[10 marks]

(d) You invest £100 into a bank account with variable interest rates. Assume that the
interest rate in the ith year is given by a random variable Ri, which can assume one of
the values {r1, r2, r3} with probabilities P (Ri = rj) = pj for j = 1, 2, 3. What is the
random value Sn of your investment after n years? Calculate the expected value of Sn.

[5 marks]

End of Paper


