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Question 1. [16 marks]

(a) In Cipher Challenge, one of the submissions was encrypted using the
Vigènere key XYABT followed by a Caesar shift of 13. One of the students
managed to crack this cipher by finding both the Vigènere key XYABT and
the shift of 13. How did I find out that they had cheated? [4]

(b) The following ciphertext has been encrypted using the affine map
x 7→ 25x+ 6 (mod26). Decrypt it.

ISMPG TOKCP YOESP PCEN [6]

(c) How many substitution ciphers on the English alphabet are there that encrypt
each of the following letters to itself: d, s, and t? How many of them are
affine? Justify your answers. [6]

Question 2. [18 marks]

(a) Define what an orthogonal array of degree k and strength t over an alphabet
A = {a1, . . . , aq} of size q is. [4]

(b) Find the adjugate of the following Latin square on the alphabet
A = {1, 2, 3, 4}.

2 3 1 4
3 4 2 1
4 1 3 2
1 2 4 3

[6]

(c) State and prove Shannon’s Theorem about one-time pads. (You do not need
to define what a one-time pad is.) [8]

Question 3. [18 marks]

(a) State two of the three Golomb’s postulates G1, G2 and G3 for a finite
sequence of 0’s and 1’s. (Any two you like.) You do not need to define the
terms run and correlation. [6]

(b) Define a trapdoor one-way function and explain its relevance to public-key
cryptography. [4]

(c) Let p be a prime number such that 2p − 1 is also prime. Prove that every
irreducible polynomial of degree p over Z2 is primitive. [Hint. How many
irreducible/primitive polynomials are there?] [8]
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Question 4. [16 marks]

(a) Let a and n be positive integers that are relatively prime. Define the order of
a modulo n. [3]

(b) Compute 97121 (mod14300). Simplify your answer as much as possible.
[Hint. The Carmichael function λ(n) may be helpful.] [7]

(c) We know that 2077 is the product of two prime numbers, and that
λ(2077) = 330. Use this information to factorise 2077. (The marks are for
the method, not just the factorisation.) [6]

Question 5. [12 marks]

(a) Apply the Miller-Rabin primality test with x = 46 to test whether 133 is a
prime number or not. (The marks are for the method, not the final yes/no
answer.) [Hint. 4633 ≡ 113 (mod133).] [7]

(b) Suppose Bob’s Knapsack key is (52, 26, 108, 445, 3, 896, 1792, 3584). Why
is this a bad choice for a key? Suppose Alice sends the ciphertext b = 1059
to Bob. Decrypt it. [5]

Question 6. [20 marks]

(a) Explain the Discrete Logarithm Problem. Is it NP-complete? [4]

(b) Explain the Diffie-Hellman key establishment protocol. Suppose Eve knows a
fast way of solving the Discrete Logarithm Problem. Explain how she can
recover the key that has been established between Alice and Bob through the
Diffie-Hellman key establishment protocol. [8]

(c) Anna and Ben are using El-Gamal for encryption. They are using the prime
p = 59, and primitive root g = 6 modulo 59. Ben’s secret number is b = 37.
Calculate the rest of Ben’s public key, and encrypt the plaintext x = 11 for
sending to him. [Hint. You may use the fast method from the lectures to
compute powers of 6 modulo 59.] [8]

End of Paper.
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