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Question 1. [17 marks]

(a) State the sum rule and the correspondence principle of combinatorics. [4]

(b) For integers n and k with 0 � k � n the binomial coefficient
�

n
k

�
is defined to be the

number of k-element subsets of an n-set. Using this definition, show that
�

n
k

�
=

�
n − 1
k − 1

�
+

�
n − 1

k

�
for 1 � k � n. [6]

(c) Making use of the recurrence relation in part (b), prove that
�

n
k

�
=

n!
k!(n − k)!

for 0 � k � n

where, for a non-negative integer n, we define

n! =

�
∏n

i=1 i if n > 0
1 if n = 0.

[7]

Question 2. [28 marks]

(a) State and prove the binomial theorem for non-negative integral exponents. [6]

(b) Provide a bijective proof of the following statement: the number of even-size subsets of
a non-empty finite set S equals the number of odd-size subsets. [6]

(c) Define the Stirling numbers S(n, k) of the second kind, as well as the Bell numbers
b(n). What is the connection between b(n) and the Stirling numbers S(n, k)? [5]

(d) Straight from the definition, compute the numbers S(n, 2) for n � 0. [4]

(e) (i) Define the multinomial coefficient
�

n
n1, . . . , nk

�
,

and explain the counting problem to which it is the answer. [3]

(ii) Let a = (a1, a2, a3) be a triple of non-negative integers, and let e1 = (1, 0, 0),
e2 = (0, 1, 0), e3 = (0, 0, 1) be the coordinate vectors. Show that the number of
lattice paths in the 3-dimensional integral grid from the origin (0, 0, 0) to the point
a using steps e1, e2, e3 is given by the multinomial coefficient

�
a1 + a2 + a3

a1, a2, a3

�
. [4]
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Question 3. [16 marks]

(a) Define what is meant by a simple graph on a vertex set Ω. How many simple graphs
are there on a given set of n labelled vertices? (You need not justify your answer.) [4]

(b) Define what is meant by an isomorphism φ : G → G�, where G = (V, E) and
G� = (V �, E�) are graphs. [3]

(c) Consider the graphs G = (V, E) and G� = (V �, E�) with vertex sets V = V � = [5], and
with edge sets

E :=
�
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}

�
,

E� :=
�
{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}

�
.

Write down an isomorphism from G to G�. [4]

(d) Prove that every simple graph on n � 2 vertices contains vertices v1, v2 with v1 �= v2
and deg(v1) = deg(v2).

[Hint: what are the possible values of deg(v)? Apply the pigeonhole principle.] [5]

Question 4. [13 marks]

(a) Define the generalized binomial coefficient
�

α
k

�
, where α is any complex number and

k is a non-negative integer. Show that
�−n

k

�
= (−1)k

�
n − k + 1

k

�
,

where n and k are non-negative integers. [6]

(b) (i) State the inclusion/exclusion principle for n finite sets A1, A2, . . . , An. [3]

(ii) Suppose you are given the following information concerning the three finite sets A,
B, and C:

|A| = 7, |A ∩ B| = 3,
|B| = 8, |A ∩ C| = 2,
|C| = 5, |B ∩ C| = 3.

Which values can |A ∪ B ∪ C| take? Justify your answer. [4]
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Question 5. [26 marks]

(a) Let G = (V, E) be a (simple) graph. Define the concepts of a walk, path, and cycle in G.
When is G called connected? [5]

(b) When is a graph G called a tree? [2]

(c) Suppose that T = (V, E) is a finite tree with |V| � 2.

(i) Show that T has (at least) two leaves (i.e. vertices of degree 1). [4]

(ii) State the induction lemma for finite trees. [3]

(iii) Making use of part (ii), show that a finite tree with n vertices has precisely n − 1
edges. [3]

(d) Let G = (V, E) be a graph.

(i) When is G called bipartite? [2]

(ii) State an alternative characterization of bipartite graphs in terms of the lengths of
cycles. [3]

(iii) Consider the graph G with V = [6] and

E =
�
{1, 2}, {1, 4}, {1, 6}, {2, 3}, {2, 5}, {3, 4}, {3, 6}, {4, 5}

�
.

Decide, with justification, whether or not G is bipartite. [4]

End of Paper.
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