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For questions 1 and 2: You do not need to simplify any binomial coefficients, fac-
torials, or large powers. Additionally, you may (but are not required to) provide a brief
justification for how you arrived at your answer. This may be counted toward partial
marks even if your final answer is incorrect.

Question 1. [18 marks] There is an athletics club that has 12 members.

(a) The club enters a 4 person team to run a relay race. To do this, they must
produce an ordered list of 4 members. How many different such lists can be
chosen? [4]

(b) The club selects a set of 5 members to compete in a regional contest. How many
different ways can the set of 5 members be chosen? [4]

(c) The members of the club split up into teams of size 2 to play tennis. How many
different ways can the 12 members of the club be divided into 6 disjoint sets of
size 2? [5]

(d) The club buys a box of 20 identical protein bars. How many different ways can
they divide the 20 bars amongst all the members, if each member must receive at
least one bar? [5]

Question 2. [17 marks]

(a) State the General Inclusion-Exclusion Principle. [6]

Now, consider the following 3 disjoint sets of symbols:

• D is the set of all 10 digits, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

• U is the set containing all 26 upper-case letters.

• S is the following set of 4 special symbols: {$,%, ∗, !}.

Let A = D ∪ U ∪ S and consider the set of all sequences of length 10 over A. Answer
each of the following questions about this set of sequences.

(b) How many such sequences do not contain a symbol from D? [3]

(c) How many such sequences do not contain a symbol from either D or U? [3]

(d) How many such sequences contain at least one symbol from each of D, U , and
S? [5]
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Question 3. [18 marks]

(a) Solve the following recurrence with given initial conditions. That is, give a
closed-form solution for an:

an = an−1 + 6an−2, for all n ≥ 2

a0 = 5, a1 = 10 [9]

(b) Let

R(x) =
7

1 + 3x
+

3

1− 4x

be the generating series for the sequence r0, r1, r2, . . .. Give a closed-form
expression for rn. [9]

Question 4. [18 marks]

(a) Give 3 different characterisations of trees. That is, give 3 different statements
about a graph G, each of which is true if and only if G is a tree. [9]

(b) State Hall’s Condition, which holds if and only if a bipartite graph G(V,E) with
sides L and R (where V = L ∪R) has a matching saturating L. [4]

(c) You are scheduling a set of job interviews. There are 6 candidates: Alice, Bob,
Cynthia, Dmitiri, Erica, and Faiz. There are 6 time slots available, starting at:
1PM, 2PM, 3PM, 4PM, 5PM, and 6PM. The following table shows which
candidates are available for which times: each of the time slots for which a
candidate is available is marked with an X.

1PM 2PM 3PM 4PM 5PM 6PM
Alice X X X
Bob X X

Cynthia X X
Dmitri X X

Erica X X X
Faiz X X X

Your task is to assign each candidate an interview time so that: (1) candidates
are only interviewed at times when they are available, and (2) no two candidates
are interviewed at the same time. Is it possible to find such an assignment? If so,
give the assignment. If not, say why. [5]
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Question 5. [19 marks]

(a) State Euler’s formula, which holds for any planar embedding of a connected
graph. [4]

(b) Let G(V,E) be a graph and recall that for every v ∈ V , we define deg(v) as the
number of edges incident on v. Show that:∑

v∈V (G)

deg(v) = 2|E(G)| . [4]

(c) What is a subdivision of a graph G? [3]

(d) State Kuratowski’s Theorem characterising planar graphs (you do not need to
define any well-known graphs appearing in the statement of the theorem). [4]

(e) Is the following graph planar? If so, give (that is, draw) a planar embedding for
it. If not, say why. [4]
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Question 6. [10 marks]

(a) Are the following Latin squares of order 4 orthogonal? Justify your answer.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3 [4]

(b) Prove that for any n ≥ 1, there are at most (n− 1) mutually orthogonal Latin
squares of order n. [6]

End of Paper.
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