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Question 1. [20 marks] Give, with justification, a simple formula for the each
of the following. (You need not evaluate factorials or large powers.)

(a) The number of sequences of 8 letters (with repetitions allowed) from an
alphabet of 26 letters. [5]

(b) The number of partitions of a set of size 28 into 7 disjoint subsets of size 4. [5]

(c) The number of ways of distributing 12 identical bottles of lemonade to 5
children, such that each child gets at least one bottle. [5]

(d) The number of ways of distributing 12 identical bottles of lemonade to 5
children, such that each child gets at least one bottle, but no child gets more
than three bottles. [5]

Question 2. [12 marks] Suppose G is a graph, with vertex set V and edge set E.

(a) If C ⊆ V , define what is meant by the neighbourhood of C in G. [2]

(b) Now suppose G is bipartite, with bipartition (A,B). Define what is meant by
a matching from A to B. [3]

(c) Give a precise statement of Hall’s Matching Theorem. [3]

(d) Does the graph below have a matching from {1, 2, 3, 4, 5} to {6, 7, 8, 9, 10}?
Justify your answer. [4]

1 2 3 4 5

6 7 8 9 10

Question 3. [18 marks] Solve the following recurrence relations, with the given
initial conditions.

(a) an = 2an−1 + 3an−2, with a1 = 1, and a2 = 11. [6]

(b) bn = 3bn−1 − 3bn−2 + bn−3, with b1 = 1, b2 = 2, and b3 = 5. [6]

(c) cn+1 = c3n, with c1 = 2. [6]
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Question 4. [24 marks]

(a) Define what it means for a graph to be a plane graph. Define what it means
for a graph to be a planar graph. [4]

(b) State Euler’s formula for connected plane graphs. [3]

(c) Use Euler’s formula to show that in a connected bipartite plane graph, the
number n of vertices and the number e of edges satisfy

e 6 2(n− 2).

(Hint: Recall that a bipartite graph contains no triangles.) [6]

(d) Suppose m,n ∈ N. Give the definition of the complete bipartite graph
Km,n. [3]

(e) Use part (c) to show that K3,3 is not planar. [3]

(f) For which m,n is Km,n planar? Justify your answer. [5]

Question 5. [12 marks]

(a) Define the term Latin square of order n, and prove that for every positive
integer n there is at least one Latin square of order n. [6]

(b) Define what it means for a pair of Latin squares of order n to be orthogonal. [2]

(c) Let A and B be the following Latin squares of order 4.

A =

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

B =

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

Find another Latin square of order 4 which is orthogonal to both A and B. [4]

Question 6. [14 marks]

(a) State and prove the Principle of Inclusion and Exclusion. [8]

(b) Now suppose n > k. Use the Principle of Inclusion and Exclusion to prove
that the number of surjective functions from {1, . . . , n} to {1, . . . , k} is

k−1∑
j=0

(−1)j
(
k

j

)
(k − j)n. [6]

End of Paper.
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