Main Examination period 2017

MTH6109 / MTH6109P: Combinatorics

Duration: 2 hours

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator.

You should attempt ALL questions. Marks available are shown next to the questions.

Calculators are not permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Complete all rough work in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately.

It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms, it shall be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

Exam papers must not be removed from the examination room.

Examiners: R. A. Wilson, M. Fayers, B. Noohi

Question 1. [20 marks] Give, with justification, a simple formula for the each of the following. (You need not evaluate factorials or large powers.)
(a) The number of sequences of 8 letters (with repetitions allowed) from an alphabet of 26 letters.
(b) The number of partitions of a set of size 28 into 7 disjoint subsets of size 4 .
(c) The number of ways of distributing 12 identical bottles of lemonade to 5 children, such that each child gets at least one bottle.
(d) The number of ways of distributing 12 identical bottles of lemonade to 5 children, such that each child gets at least one bottle, but no child gets more than three bottles.

Question 2. [12 marks] Suppose G is a graph, with vertex set V and edge set E.
(a) If $C \subseteq V$, define what is meant by the neighbourhood of C in G.
(b) Now suppose G is bipartite, with bipartition (A, B). Define what is meant by a matching from A to B.
(c) Give a precise statement of Hall's Matching Theorem.
(d) Does the graph below have a matching from $\{1,2,3,4,5\}$ to $\{6,7,8,9,10\}$? Justify your answer.

Question 3. [18 marks] Solve the following recurrence relations, with the given initial conditions.
(a) $a_{n}=2 a_{n-1}+3 a_{n-2}$, with $a_{1}=1$, and $a_{2}=11$.
(b) $b_{n}=3 b_{n-1}-3 b_{n-2}+b_{n-3}$, with $b_{1}=1, b_{2}=2$, and $b_{3}=5$.
(c) $c_{n+1}=c_{n}^{3}$, with $c_{1}=2$.

Question 4. [24 marks]

(a) Define what it means for a graph to be a plane graph. Define what it means for a graph to be a planar graph.
(b) State Euler's formula for connected plane graphs.
(c) Use Euler's formula to show that in a connected bipartite plane graph, the number n of vertices and the number e of edges satisfy

$$
e \leqslant 2(n-2)
$$

(Hint: Recall that a bipartite graph contains no triangles.)
(d) Suppose $m, n \in \mathbb{N}$. Give the definition of the complete bipartite graph $K_{m, n}$.
(e) Use part (c) to show that $K_{3,3}$ is not planar.
(f) For which m, n is $K_{m, n}$ planar? Justify your answer.

Question 5. [12 marks]

(a) Define the term Latin square of order n, and prove that for every positive integer n there is at least one Latin square of order n.
(b) Define what it means for a pair of Latin squares of order n to be orthogonal.
(c) Let A and B be the following Latin squares of order 4 .

$$
A=\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1
\end{array} \quad B=\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1 \\
2 & 1 & 4 & 3
\end{array}
$$

Find another Latin square of order 4 which is orthogonal to both A and B.

Question 6. [14 marks]

(a) State and prove the Principle of Inclusion and Exclusion.
(b) Now suppose $n \geqslant k$. Use the Principle of Inclusion and Exclusion to prove that the number of surjective functions from $\{1, \ldots, n\}$ to $\{1, \ldots, k\}$ is

$$
\begin{equation*}
\sum_{j=0}^{k-1}(-1)^{j}\binom{k}{j}(k-j)^{n} \tag{6}
\end{equation*}
$$

End of Paper.

