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Question 1. Suppose you have 24 identical sweets to distribute to five children.

(a) How many ways are there of distributing the sweets to the children? [4]

(b) How many ways are there if every child gets at least one sweet? [4]

(c) Now suppose there are 12 red sweets and 12 green sweets. In how many ways
can the sweets be distributed so that each child gets at least one sweet of
each colour? [4]

(d) Now suppose that two of the children will not eat green sweets and one other
will not eat red sweets. How many ways are there of distributing 12 red and
12 green sweets in accordance with these restrictions? [4]

[Justify your answers. You need not evaluate binomial coefficients in your answers.]

Question 2. Let A = {1, 2, . . . , n} and B = {1, 2, . . . , k}, where k, n are positive
integers.

(a) Derive a formula for the number of functions f : A→ B. [4]

(b) Derive a formula for the number of injective (one-to-one) functions
f : A→ B. [4]

(c) State the Principle of Inclusion and Exclusion. [4]

(d) Derive a formula for the number of surjective (onto) functions f : A→ B, in
the case when k = 4 and n = 6. [You need not evaluate the answer.] [6]

Question 3. (a) Solve the recurrence relation

an = 2an−1 + 15an−2

with initial conditions a0 = 3, a1 = −1. [4]

(b) Solve the recurrence relation

bn = 3bn−1 − 3bn−2 + bn−3

with initial conditions b0 = 1, b1 = 3, b2 = 9. [6]

(c) Suppose that c0 = c1 = 1 and

cn = cn−1 + (n− 1)cn−2.

Show that cn ≥
√

n!, for all n ≥ 0. [6]
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Question 4. Let Cn denote the number of ways of bracketing the expression

a1a2a3 · · · an−1an,

and let

C(x) =
∞∑

n=1

Cnxn−1 = C1 + C2x + C3x
2 + · · · .

(a) Show that

Cn =
n−1∑
i=1

CiCn−i,

with C1 = C2 = 1. [4]

(b) Hence or otherwise compute C4. [2]

(c) Show that xC(x)2 = C(x)− 1. [4]

(d) Hence or otherwise find a closed formula for C(x). [4]

Question 5. (a) Define the terms bipartite, matching and neighbourhood,
as used in graph theory. [4]

(b) State Hall’s Theorem about the existence of matchings in bipartite graphs. [4]

(c) Define the term Latin rectangle, and give an example of a 5× 3 Latin
rectangle. [4]

(d) Prove that if k < n then every n× k Latin rectangle can be extended to an
n× (k + 1) Latin rectangle.

[You may assume that Hall’s condition is satisfied in any r-regular bipartite
graph.]

Illustrate by extending your example in (c) to a 5× 4 Latin rectangle. [6]

Question 6. (a) State Euler’s equation, for a connected plane graph with n
vertices, p edges, and q faces. [2]

(b) Deduce that, provided n ≥ 3,

p ≤ 3n− 6.

[6]

(c) Hence show that the average degree of the vertices in any planar graph is
strictly less than 6. [4]

(d) State and prove the five-colour theorem. [6]

End of Paper.
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