Main Examination period 2023 - May/June - Semester B

MTH6018: Coding Theory

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 2 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: I.D. Morris, A. Saha

Question 1 [13 marks].
Consider the two codes \mathcal{C} and \mathcal{D} over the alphabet $\mathbb{A}=\{\mathrm{A}, \mathrm{B}, \ldots, \mathrm{Y}, \mathrm{z}\}$ given by:

$$
\mathcal{C}:=\{\text { France, Greece, Latvia, serbia, sweden }\}
$$

and

$$
\mathcal{D}:=\{\text { Angola, Gambia, malawi, Uganda, zambia }\} .
$$

(a) Compute the minimum distance of \mathcal{C} and the minimum distance of \mathcal{D}. Justify your answer in each case.
(b) For which values of $t>0$, if any, are these two codes t-error-correcting? For which values are they t-error-detecting? In each case list all values of t for which this property holds.
(c) Could the two codes \mathcal{C} and \mathcal{D} be equivalent? Give a brief justification for your answer.

Question 2 [22 marks].

Recall that the rate of a q-ary (n, M, d)-code \mathcal{C} is defined to be the quantity

$$
R(\mathcal{C}):=\frac{\log M}{n \log q} .
$$

(a) Let \mathbb{A} be a q-ary alphabet and $\mathcal{D} \subseteq \mathbb{A}^{n}$ a q-ary (n, M, d)-code, where $d \geq 2$. Is it possible that we could have $R(\mathcal{D})=1$? Why, or why not?
(b) If \mathcal{E} is a linear $[n, k]$-code over \mathbb{F}_{q}, what is the rate of \mathcal{E} ? More generally, which numbers in the range 0 to 1 can be the rate of a linear code of length n over \mathbb{F}_{q} and which can not? Justify your answer with reference to a result from the course
(c) Write down the rate of the Reed-Muller code $\mathcal{R}(4,7)$.
(d) Write down the rate of the Hamming code $\operatorname{Ham}(4,8)$.
(e) Let \mathbb{A} be a q-ary alphabet and $\mathcal{C}_{1} \subseteq \mathbb{A}^{n}$ a q-ary (n, M, d)-code, where $M \geq 2$. Recall that for any two words $u=u_{1} u_{2} \cdots u_{n}$ and $v=v_{1} v_{2} \cdots v_{n}$ in \mathcal{C}_{1} we define $u \| v$ to be the word $u_{1} u_{2} \cdots u_{n} v_{1} v_{2} \cdots v_{n}$. Define a new code by $\mathcal{C}_{2}:=\left\{u \| v: u, v \in \mathcal{C}_{1}\right\}$.
(i) Show that $R\left(\mathcal{C}_{2}\right)=R\left(\mathcal{C}_{1}\right)$.
(ii) Show that $d\left(\mathcal{C}_{2}\right)=d\left(\mathcal{C}_{1}\right)$.

Question 3 [13 marks].
Decide which of the following statements are true and which are false. Give a brief justification for your answer in each case, stating which results from the course you use in your answer (if any).
(a) $A_{4}(3,3)>4$
(b) $A_{2}(11,8)=2$
(c) $A_{4}(8,5)>236$.

Question 4 [14 marks].

Consider the linear code \mathcal{C} over \mathbb{F}_{3} with generator matrix given by

$$
G=\left(\begin{array}{lllll}
1 & 0 & 2 & 2 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 2 & 2 & 0 & 0
\end{array}\right)
$$

(a) Put the generator matrix G into standard form, making it clear at each stage which operations are being used.
(b) Using the standard-form generator matrix obtained in your answer to (a), find a parity-check matrix H for a code equivalent to \mathcal{C}.
(c) Is the parity-check matrix H which you constructed in (b) a parity-check matrix for the code \mathcal{C} itself, or is it only a parity-check matrix for a code equivalent to \mathcal{C} ? Justify your answer.

Question 5 [10 marks].
Consider the following three matrices with entries in the field \mathbb{F}_{7} :

$$
\begin{aligned}
H_{1} & =\left(\begin{array}{llllllll}
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}\right), \\
H_{2} & =\left(\begin{array}{llllllll}
2 & 1 & 5 & 1 & 3 & 0 & 4 & 6 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right), \\
H_{3} & =\left(\begin{array}{llllllll}
6 & 0 & 3 & 1 & 2 & 4 & 2 & 5 \\
0 & 6 & 5 & 4 & 1 & 1 & 4 & 6
\end{array}\right) .
\end{aligned}
$$

For each of the three matrices H_{1}, H_{2}, H_{3} decide whether or not that matrix is a parity-check matrix for (a version of) the Hamming code $\operatorname{Ham}(2,7)$. Justify your answer for each matrix.

Question 6 [17 marks]. Consider the linear code \mathcal{C} over \mathbb{F}_{2} with parity-check matrix given by

$$
H=\left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

(a) (i) Construct a syndrome lookup table for \mathcal{C}. Your answer should include any calculations involved in the construction.
(ii) Use your syndrome lookup table to decode the word 01110.
(b) (i) Give an example of a word in \mathcal{C} which has weight 2. You should include any calculations or additional reasoning needed to justify your answer.
(ii) Show that \mathcal{C} cannot contain a word of weight 1 .

Question 7 [11 marks].

Consider the code \mathcal{C} over \mathbb{F}_{7} with the following parity-check matrix:

$$
\left(\begin{array}{lllll}
0 & 1 & 3 & 0 & 1 \\
4 & 4 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 & 3
\end{array}\right) .
$$

(a) Decide whether or not \mathcal{C} is an MDS code. Give a brief justification for your answer.
(b) Suppose that the above matrix is instead taken to be the parity-check matrix of a linear code \mathcal{D} over \mathbb{F}_{5}. Is \mathcal{D} an MDS code? Give a brief justification for your answer.

End of Paper.

(C) Queen Mary University of London (2023)

