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Question 1. (a) Give the definitions of the following:

(i) a code of length n over an alphabet A; [1]

(ii) a q-ary (n,M,d)-code; [2]

(iii) Aq(n,d). [2]

(b) How many errors can an (n,M,d)-code correct? [2]

(c) State and prove the Singleton bound. State precisely any lemma used in the proof. [6]

(d) State the Hamming bound. [3]

(e) State the Plotkin bound. [3]

(f) Prove or disprove the following statements.

(i) A2(8,4)≥ 18. [2]

(ii) A7(3,3)≥ 6. [2]

(iii) A2(10,5)≥ 14. [2]

Question 2. (a) Give the definitions of the following:

(i) a linear code of length n over Fq; [1]

(ii) a linear [n,k,d]-code over Fq; [2]

(iii) the weight of a word. [1]

(b) Prove that the minimum distance of a linear code equals the minimum weight of a
non-zero word. [4]

(c) Find an example of a non-linear code where the minimum distance is not equal to the
minimum weight of a non-zero word. [2]

(d) Suppose C is a linear [n,k]-code over Fq.

(i) What is a Slepian array for C? [2]

(ii) What is a nearest-neighbour decoding process for C? [2]

(iii) Explain how to use a Slepian array for C to construct a nearest-neighbour de-
coding process for C. [2]

(e) Consider the binary code C with generator matrix

G =

[
1 0 1 0
0 1 0 1

]
.

(i) Write down a Slepian array for C and use it to decode the word 1001. [6]

(ii) Assuming that the symbol error probability is 1
5 , compute the word error proba-

bility for the word 1111. [4]
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Question 3. (a) Suppose C is a linear [n,k]-code over Fq.

(i) What is the dual code C⊥? [2]

(ii) What is a parity-check matrix for C? [2]

(iii) Suppose H is a parity-check matrix for C. State the Minimum Distance Theorem
for Linear Codes, which explains how the minimum distance of C is related to
the linear independence of the columns of H. [2]

(iv) What is the syndrome of a word v ∈ Fn
q? [2]

(v) Explain how to construct a syndrome look-up table for C. [2]

(vi) Explain how to construct a nearest-neighbour decoding process for C using a
syndrome look-up table. [2]

(b) Consider the binary code C with generator matrix1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1


(i) Construct a syndrome look-up table for C and use it to decode the word 101010. [8]

(ii) Compute the minimum distance d(C), explaining the method. [4]

Question 4. (a) Define the binary Hamming code Ham(r,2) for r ≥ 0. [3]

(b) Find a generator matrix for Ham(3,2) and compute its minimum distance. [6]

(c) Find a generator matrix for a binary [8,4,4]-code. [3]

(d) State the Singleton bound for linear codes. [2]

(e) When is an [n,k,d]-code a maximum distance separable (MDS) code? [2]

(f) Prove that an [n,k,d]-code is MDS if and only if every set of n− k columns in its
parity-check matrix is linearly independent. [5]

(g) Is the code over F5 with parity-check matrix1 0 0 3 2
0 1 0 1 1
0 0 1 4 2


an MDS code? Justify your answer. [4]

End of Paper.
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