Main Examination period 2023 - January - Semester A

MTH6107 / MTH6107P: Chaos \& Fractals

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: O. Jenkinson, S. Wang

Throughout this exam, the notation $d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8} d_{9}$ will denote your 9-digit QMUL student ID number, where d_{i} is an element of $\{0,1,2,3,4,5,6,7,8,9\}$ for $1 \leq i \leq 9$. The distinct digits in your student ID number, written in increasing order, will be denoted $a_{1}<a_{2}<a_{3}<\ldots<a_{k}$, where $k \leq 9$ is the cardinality of the set $\left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}, d_{8}, d_{9}\right\}$.
Your largest student digit will be denoted $a=a_{k}=\max \left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}, d_{8}, d_{9}\right\}$.

Question 1 [25 marks]. Given an iterated function system defined by the two maps $\phi_{1}(x)=\left(x+a_{1}\right) / 10$ and $\phi_{2}(x)=\left(x+a_{4}\right) / 10$, define $\Phi(A)=\phi_{1}(A) \cup \phi_{2}(A)$, and let C_{k} denote $\Phi^{k}([0,1])$ for $k \geq 0$.
(a) Write down a_{1} and a_{4}, and determine the sets C_{1} and C_{2}.
(b) If C_{k} is expressed as a disjoint union of N_{k} closed intervals, compute the number N_{k}.
(c) What is the common length of each of the N_{k} closed intervals whose disjoint union equals C_{k} ?
(d) Compute the box dimension of $C=\cap_{k=0}^{\infty} C_{k}$, being careful to justify your answer.
(e) Compute the box dimension of $D=\cap_{k=0}^{\infty} \Psi^{k}([0,1])$, where $\Psi(A)=\psi_{1}(A) \cup \psi_{2}(A)$, and $\psi_{1}(x)=\left(x+a_{1}\right) / 16, \psi_{2}(x)=\left(x+a_{4}\right) / 16$.
(f) Describe a set E whose box dimension is equal to $a_{4} /\left(a_{4}+1\right)$, being careful to justify your answer.

Question 2 [25 marks]. Let $a=\max \left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}, d_{8}, d_{9}\right\}$ be your largest student ID digit, and suppose the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x^{2}-a$.
(a) Determine all fixed points of f, and determine whether each fixed point is attracting or repelling, taking care to justify your answer.
(b) Determine all 2-cycles for f, and determine whether each 2-cycle is attracting or repelling, taking care to justify your answer.
(c) Give one example of an eventually fixed point that is not itself a fixed point, and one example of an eventually periodic point of least period 2 that is not itself a periodic point.
(d) If $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(x)=x^{2}+a$, determine whether there is a topological conjugacy from f to g, taking care to justify your answer.
(e) If $F: \mathbb{R} \rightarrow \mathbb{R}$ and and $G: \mathbb{R} \rightarrow \mathbb{R}$ are defined by $F(x)=x-a$ and $G(x)=x+a$, determine whether there is a topological conjugacy from F to G, taking care to justify your answer.

Question 3 [25 marks]. For parameters $\lambda>0$, define $f_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{\lambda}(x)=\lambda x^{2}(1-x) .
$$

(a) Show that there is a point $p \in \mathbb{R}$ which is a fixed point of f_{λ} for all $\lambda>0$. Is p attracting or repelling? Justify your answer.
(b) Determine the value $\lambda_{1}>0$ such that f_{λ} has precisely one fixed point if $\lambda \in\left(0, \lambda_{1}\right)$, and precisely 3 fixed points if $\lambda>\lambda_{1}$. Justify your answer.
(c) For $\lambda>\lambda_{1}$, let $x_{\lambda}^{-}<x_{\lambda}^{+}$denote the two fixed points of f_{λ} which are not equal to p. Determine explicit formulae for x_{λ}^{-}and x_{λ}^{+}in terms of λ.
(d) Show that x_{λ}^{-}is a repelling fixed point of f_{λ} for all $\lambda>\lambda_{1}$.
(e) Determine the value $\lambda_{2}>\lambda_{1}$ such that if $\lambda \in\left(\lambda_{1}, \lambda_{2}\right)$ then x_{λ}^{+}is an attracting fixed point of f_{λ}, and if $\lambda>\lambda_{2}$ then x_{λ}^{+}is a repelling fixed point of f_{λ}. Justify your answer.
(f) Show that there exists $\lambda \in(5,6)$ such that $2 / 3$ is a point of least period 2 for f_{λ}.

Question 4 [25 marks].

(a) For the function $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{1}(x)=x+\sum_{i=1}^{9} x^{2 d_{i}+1}$, give a formula for the derivative $f_{1}^{\prime}(x)$.
Using properties of this derivative, or otherwise, show that the only periodic point for f_{1} is the fixed point at 0 .
(b) For the function $f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{2}(x)= \begin{cases}-2(1+x) & \text { for } x<0 \\ x-2 & \text { for } x \geq 0\end{cases}
$$

evaluate the set $\left\{n \in \mathbb{N}: f_{2}\right.$ has a point of least period $\left.n\right\}$, being careful to justify your answer.
(c) For the function $f_{3}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{3}(x)= \begin{cases}-2(1+x) & \text { for } x<0 \\ x / 2-2 & \text { for } x \geq 0\end{cases}
$$

evaluate the set $\left\{n \in \mathbb{N}: f_{3}\right.$ has a point of least period $\left.n\right\}$, being careful to justify your answer.
(d) Without using Sharkovskii's Theorem, show that every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ which has a periodic orbit must have a fixed point. [Hint: Use the Intermediate Value Theorem.]

End of Paper.

© Queen Mary University of London (2023)

