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Question 1. [25 marks]

(a) Consider a function f : R→ R.

(i) What does it mean to say that a point x0 ∈ R is a fixed point for f ? [1]

(ii) What does it mean to say that a point x0 ∈ R is a periodic point for f ? [1]

(iii) How is the prime period of a periodic point defined? [1]

(iv) What does it mean to say that a point x0 ∈ R is a pre-periodic point for f ? [2]

(v) Prove that if f is invertible then every pre-periodic point is a periodic
point. [5]

(b) Consider the function f : R→ R, defined by f (x) = x2 − 3x + 2.

(i) Compute the values of all fixed points and points of prime period 2 of f . [7]

(ii) Find whether the fixed point(s) and period two orbit(s) are attracting or
repelling (or neither). [6]

(iii) Find a pre-periodic point that is not a periodic point, or give a reason why
such a point does not exist. [2]

Question 2. [25 marks]

(a) Consider the function f : R→ R, defined by f (x) = 2x3 − x2.

(i) Compute the values of all fixed points, and determine whether these
points are attracting or repelling (or neither). [9]

(ii) Sketch the graph of f . [2]

(iii) For this function f , which points lie in the basin(s) of attraction of the
attracting fixed point(s)? [Give reasons but a formal proof is not expected]. [5]

(b) (i) State Sharkovskii’s Theorem concerning the existence of periodic orbits of
specified prime periods for a continuous map f from R to itself. [6]

(ii) For which of the following numbers n is it true that the existence of a
periodic orbit of prime period n implies the existence of periodic orbits of
prime period equal to all of the other three values?

n = 16, 18, 40, 56. [3]

c© Queen Mary University of London (2018)



MTH6107 / MTH6107P (2018) Page 3

Question 3. [25 marks]

(a) Let fµ : [0, 1]→ [0, 1] denote the logistic map, defined by fµ(x) = µx(1− x), for
values of the parameter µ ∈ [0, 4].

(i) Show that for µ > 1 the map fµ has a fixed point in the open interval (0, 1).
Show that this point is an attractor when 1 < µ < 3 and a repeller when
µ > 3. [5]

(ii) For the logistic map, briefly describe what is meant by the
period-doubling bifurcation cascade. [3]

(b) Let D : [0, 1)→ [0, 1) denote the doubling map D(x) = 2x (mod 1), and let σ
denote the shift map on the space of all one-sided infinite binary sequences.

(i) List all the periodic orbits of D which have prime periods 2 and 3. [3]

(ii) Write down the binary digit expansions for each periodic point in (i). [4]

(iii) How many orbits of prime period 6 does the shift map σ have? [3]

(iv) Consider the binary digit sequence 0001001. Which real number in [0, 1)
has this as its binary representation? What is the prime period of this point
under the doubling map D? [2]

(c) Let f be a diffeomorphism from the real line R to itself. Prove that if f is
order-reversing then it has exactly one fixed point. [5]
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Question 4. [25 marks]

(a) (i) Consider intervals X and Y in R, and let f : X → X and g : Y → Y be
continuous maps. What is meant by a topological conjugacy between the
map f and the map g? [3]

(ii) Show that if f is conjugate to g, then f k is conjugate to gk, for all positive
integers k. [5]

(iii) If f : [0, 1]→ [0, 1] is defined by f (x) = 4x(1− x), and g : [−1, 1]→ [−1, 1]
is defined by g(x) = 1− 2x2, use the map h(x) = 2x− 1 to show that f and
g are topologically conjugate. [4]

(iv) If f : [0, 1]→ [0, 1] is defined by f (x) = 2x(1− x), and g : [0, 1]→ [0, 1] is
defined by g(x) = x2(1− x), show that f and g are not topologically
conjugate. [4]

(b) Let f : R→ R be a continuous map. Define what is meant for f to be chaotic
(in the sense of Devaney). [3]

(c) State which of the following maps are chaotic. If a map is not chaotic, briefly
justify your answer. [6]

(i) The tent map T : [0, 1]→ [0, 1] defined by

T(x) =

{
2x for x ∈ [0, 1/2)
2− 2x for x ∈ [1/2, 1] .

(ii) The logistic map f1 : [0, 1]→ [0, 1], defined by f1(x) = x(1− x).

(iii) The logistic map f4 : [0, 1]→ [0, 1], defined by f4(x) = 4x(1− x).

(iv) The map f : R→ R defined by f (x) = x3.
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Question 5. [25 marks]

(a) Define the box-counting dimension of a bounded subset of Rn, assuming it
exists. [5]

(b) Briefly explain how the Sierpinski square is constructed. [5]

(c) Compute the box-counting dimension of the Sierpinski square, assuming it
exists. [6]

(d) Let C denote the ‘middle-1/7’ Cantor set, the set obtained from the interval
[0, 1] ⊂ R in the same way as the middle-1/3 Cantor set, except that at each
stage of the construction the middle-1/7 of each remaining interval is removed.
Compute the box-counting dimension of C. [6]

(e) Write down an iterated function system for the middle-1/7 Cantor set C ⊂ R

(described above in part (d) of this question). [3]

End of Paper.
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