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Question 1. [27 marks]

(a) For a differentiable map f : R→ R, how is the multiplier of a periodic orbit
defined? [2]

(b) Write down a condition on the multiplier which guarantees that a periodic
orbit is stable (i.e. attractive). [2]

(c) Let fλ : [−1, 1]→ [−1, 1] be the logistic map, defined by fλ(x) = 1− λx2
for parameters λ ∈ [0, 2].

(i) For λ ∈ [0, 2), compute the fixed point x∗ = x∗(λ) ∈ [−1, 1] of fλ. [3]

(ii) Compute the multiplier of this fixed point x∗(λ). [3]

(iii) Determine the largest value λ1 with the property that the fixed point
x∗(λ) is stable for all λ ∈ [0, λ1). [2]

(iv) For λ > λ1, determine the periodic orbit of fλ which has minimal
period 2. [6]

(v) Compute the multiplier of this period-2 orbit, and determine the largest
value λ2 with the property that this orbit is stable for all λ ∈ (λ1, λ2). [4]

(vi) Briefly define what is meant by a period-doubling bifurcation. [2]

(vii) How is the Feigenbaum constant δ defined? [3]

Question 2. [26 marks]

(a) Given a subset of R2, how is its box dimension defined? [4]

(b) Briefly describe the construction of the Sierpinski triangle P ∗. Use this
description to show that if the box dimension of P ∗ exists then it must equal
log 3/ log 2. [8]

(c) LetH denote the collection of compact subsets of R2. For A,B ∈ H, how is
the Hausdorff distance h(A,B) defined? [4]

(d) Given a finite collection of self-maps of R2, how is the corresponding
iterated function system defined? [4]

(e) What does it mean for a self-map of R2 to be a contraction mapping? [3]

(f) State the Dubins & Freedman Theorem on iterated function systems
consisting of contraction mappings. [3]
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Question 3. [25 marks]
Let Σ denote the interval [−1, 1].

(a) Explain what it means for two maps f, g : Σ→ Σ to be topologically
conjugate. [3]

(b) Show that the notion of topological conjugacy defines an equivalence
relation on the set of self-maps of Σ. [4]

(c) Use the map h(x) = sin(πx/2) to show that the map f : Σ→ Σ defined by
f(x) = 1− 2|x| is topologically conjugate to the Ulam map g : Σ→ Σ given
by g(x) = 1− 2x2. [6]

(d) Find the fixed point of the map G : Σ→ Σ defined by G(x) = 1− x2, and
determine, with justification, whether this point is unstable, stable, or
superstable. [4]

(e) Find the periodic orbit of minimal period 2 for G, and determine, with
justification, whether this orbit is unstable, stable, or superstable. [4]

(f) Determine whether the map F : Σ→ Σ given by F (x) = 1− |x| is
topologically conjugate to G, being careful to justify your answer. [4]

Question 4. [22 marks]
Let σ : [0, 1)→ [0, 1) and τ : [0, 1)→ [0, 1) be defined by σ(x) = 2x (mod 1)
and τ(x) = 3x (mod 1).

(a) Given x ∈ [0, 1), with binary expansion x =
∑∞

k=1 bk/2
k where each

bk ∈ {0, 1}, show that x is periodic under σ if and only if the binary digit
sequence (bk)

∞
k=1 is periodic. [10]

(b) Determine the period-5 orbit of σ which is contained in the interval
[3/20, 13/20]. [3]

(c) Determine the periodic orbit of σ which is contained in the interval
[3/10, 4/5]. [3]

(d) Identify, with justification, those points of minimal period 4 for σ which are
also of minimal period 4 for τ . [6]

End of Paper.
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