Queen Mary
University of London

B. Sc. Examination by course unit 2015

MTH6107: Chaos \& Fractals

Duration: 2 hours
Date and time: 13th May 2015, 14.30-16.30

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator.

You should attempt ALL questions. Marks awarded are shown next to the questions.

Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Complete all rough workings in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately. It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms it shall be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

Exam papers must not be removed from the examination room.
Examiner(s): O. Jenkinson

Question 1. (a) [4 marks] For a map $f: \Sigma \rightarrow \Sigma$ on a non-empty set Σ, what does it mean to say that $x \in \Sigma$ is a periodic point for f, and how is its minimal period defined?
(b) [6 marks] Give a detailed statement of Sharkovsky's Theorem.
(c) [6 marks] Order the integers from 1 to 25 inclusive using Sharkovsky's ordering.
(d) [4 marks] For the map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=(x-1)\left(1-3 x^{2} / 2\right)$, determine the orbit of the point 0 .
(e) [4 marks] Show that the map f of part (d) above has a point of minimal period n for every $n \in \mathbb{N}$.

Question 2. Suppose the map $f:[0,1] \rightarrow[0,1]$ is defined by

$$
f(x)= \begin{cases}8 x^{3} & \text { if } x \in[0,1 / 2] \\ 2(1-x) & \text { if } x \in(1 / 2,1]\end{cases}
$$

(a) [6 marks] Determine the three fixed points of f.
(b) [6 marks] Compute the multiplier of each fixed point, and use this to determine whether the point is unstable, stable, or superstable.
(c) [5 marks] For $x=2 / 5$, compute the points $f(x), f^{2}(x)$, and $f^{3}(x)$. Describe, with justification, the behaviour of $f^{n}(x)$ as $n \rightarrow \infty$.

Question 3. (a) [9 marks] Define what it means for $f: \mathbb{R} \rightarrow \mathbb{R}$ to be
(i) a homeomorphism,
(ii) a diffeomorphism,
(iii) order reversing.
(b) [10 marks] Prove that an order reversing diffeomorphism $f: \mathbb{R} \rightarrow \mathbb{R}$ has precisely one fixed point.

Question 4. Let \mathcal{H} denote the collection of compact subsets of \mathbb{R}. Let $\Phi: \mathcal{H} \rightarrow \mathcal{H}$ be the iterated function system defined by the two maps $\phi_{1}(x)=x / 10$ and $\phi_{2}(x)=$ $(x+3) / 10$, and let C_{k} denote $\Phi^{k}([0,1])$ for $k \geq 0$.
(a) [5 marks] For $A, B \in \mathcal{H}$, how is the Hausdorff distance $h(A, B)$ defined?
(b) [4 marks] Write down the sets C_{1} and C_{2}.
(c) [5 marks] Compute $h\left(C_{1}, C_{2}\right)$.
(d) [3 marks] If C_{k} is expressed as a disjoint union of N_{k} closed intervals, compute the number N_{k}.
(e) [3 marks] What is the common length of each of the N_{k} closed intervals whose disjoint union equals C_{k} ?
(f) [5 marks] Given a set $A \subset \mathbb{R}$, how is its box dimension defined?
(g) [5 marks] Using your answers to parts (d) and (e), or otherwise, show that if the box dimension of $C=\cap_{k=0}^{\infty} C_{k}$ exists then it must equal $\log 2 / \log 10$.
(h) [5 marks] Give a description of the members of C in terms of the digits of their decimal expansion.
(i) [5 marks] If $f: C \rightarrow C$ is defined by $f(x)=10 x(\bmod 1)$ then find a point $x \in C$ which has minimal period 3 under f.

End of Paper.

