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Question 1 (a) Suppose we are given a non-empty set Σ and a map f : Σ→ Σ.

(i) [1 mark] What does it mean to say that x ∈ Σ is a fixed point for f?

(ii) [2 marks] What does it mean to say that x ∈ Σ is a periodic point for f?

(iii) [1 mark] How is the minimal period of a periodic point defined?

(iv) [2 marks] What does it mean to say that x ∈ Σ is an eventually periodic
point for f?

(v) [6 marks] Prove that if f is invertible then every eventually periodic point
is a periodic point.

(b) [5 marks] Give a detailed statement of Sharkovsky’s Theorem.

(c) Suppose the map f : [0, 1]→ [0, 1] is defined by

f(x) =

{
x+ 1/2 for x ∈ [0, 1/2)

2− 2x for x ∈ [1/2, 1] .

(i) [3 marks] For this map f , determine all its fixed points.

(ii) [4 marks] For this map f , determine an eventually periodic point which
is not periodic.

(iii) [4 marks] For this map f , determine all its points of minimal period 2.

Question 2 (a) [2 marks] For a differentiable map f : R → R, how is the multi-
plier of a periodic orbit defined?

(b) [2 marks] Write down a condition on the multiplier which guarantees that a
periodic orbit is stable (i.e. attractive).

(c) Let fλ : [−1, 1] → [−1, 1] be the logistic map, defined by fλ(x) = 1 − λx2 for
parameters λ ∈ [0, 2].

(i) [3 marks] For λ ∈ [0, 2), compute the fixed point x∗ = x∗(λ) ∈ [−1, 1] of
fλ.

(ii) [3 marks] Compute the multiplier of this fixed point x∗(λ).

(iii) [2 marks] Determine the largest value λ1 with the property that the fixed
point x∗(λ) is stable for all λ ∈ [0, λ1).

(iv) [6 marks] For λ > λ1, determine the periodic orbit of fλ which has minimal
period 2.

(v) [4 marks] Compute the multiplier of this period-2 orbit, and determine
the largest value λ2 with the property that this orbit is stable for all
λ ∈ (λ1, λ2).

(vi) [2 marks] Briefly define what is meant by a period-doubling bifurcation.

(vii) [3 marks] How is the Feigenbaum constant δ defined?

c© Queen Mary, University of London (2014)



MTH6107 (2014) Page 3

Question 3 (a) [6 marks] Define what it means for f : R→ R to be

(i) a homeomorphism,

(ii) a diffeomorphism,

(iii) order preserving.

(b) [7 marks] Prove that an order preserving diffeomorphism f : R → R does not
have any points of minimal period strictly larger than 1.

Question 4 (a) [4 marks] Let C0 = [0, 1]. In the standard construction of the
Cantor ternary set C = ∩∞k=0Ck, describe briefly how the sets Ck are defined.

(b) [2 marks] Write down the sets C1 and C2.

(c) [2 marks] If Ck is expressed as a disjoint union of Nk closed intervals, compute
the number Nk.

(d) [2 marks] What is the common length of each of the Nk closed intervals whose
disjoint union equals Ck?

(e) [4 marks] Given a set A ⊂ R, how is its box dimension defined?

(f) [4 marks] Let H denote the collection of compact subsets of R. For A,B ∈ H,
how is the Hausdorff distance h(A,B) defined?

(g) [4 marks] Compute h(C1, C2).

(h) [4 marks] Using your answers to parts (c) and (d), or otherwise, show that if
the box dimension of the ternary Cantor set C ⊂ R exists then it must equal
log 2/ log 3.

(i) [3 marks] Given two maps φ1 : R→ R and φ2 : R→ R, how is the correspond-
ing iterated function system Φ : H → H defined?

(j) [3 marks] Write down two maps φ1 : R → R and φ2 : R → R such that the
ternary Cantor set C is the fixed point of the corresponding iterated function
system Φ.
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