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In this paper, we use the following notation: Un is the group of residues modulo n which
are coprime to n, with the group operation being multiplication modulo n; D2n is the
group with 2n elements

1, r, r2, · · · , rn−1, s, rs, r2s, · · · , rn−1s ,

determined by the relations rn = s2 = 1, sr = r−1s; Sn is the group of all permutations
of {1, · · · , n}; GLn(F) is the group of invertible n×n matrices with entries in the field F.

Please justify all your answers!

Question 1 [20 marks]. Let G be a group, and let a, b ∈ G be such that
ab = b2021a.

(a) Prove that ba−1 = a−1b2021.

[5]

(b) Let H = 〈a, b〉, J = 〈a〉, K = 〈b〉. One of the following statements is necessarily
true. Which one is it?

(i) J EH.

(ii) K EH.

Justify your answer! (You do not need to prove that the other statement is false.)

[5]

(c) Let H = 〈a, b〉, J = 〈a〉, K = 〈b〉. One of the following statements is necessarily
true. Which one is it?

(i) φ : H → K, φ(bmak) = ak, is a homomorphism.

(ii) ψ : H → J , ψ(bmak) = bm, is a homomorphism.

Justify your answer! (You can assume that both maps are well-defined, and you
do not need to prove that the other statement is false.)

[5]

(d) Give an example of a group G and two elements a, b ∈ G such that a, b 6= 1 and
ab = b2021a.

[5]
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Question 2 [20 marks].

(a) Find the order of the matrix

(
1 1
1 0

)
∈ GL2(R).

[5]

(b) Find the order of the matrix

(
1 1
1 0

)
∈ GL2(F11).

[5]

(c) Find a subgroup of order 5 in GL2(F11).

[5]

(d) Let a0 and a1 ∈ F5 be arbitrary elements, and let a2 = a1 + a0, a3 = a2 + a1,
a4 = a3 + a2 and so forth. Prove that am = a0 and am+1 = a1, where m is the
answer to item (b). Hint: use the matrix which we have studied in the previous
subquestions to express the vector

(
ak+1

ak

)
in terms of

(
ak

ak−1

)
.

[5]
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Question 3 [20 marks]. Let

G =

{(
a b
c d

)
∈ GL2(R) : 2(a+ 2b) = c+ 2d

}
.

(a) Prove that G is a group.

[5]

(b) Prove that

H =

{(
a b
c d

)
∈ GL2(R) : a+ 2b = 1 , c+ 2d = 2

}
is a normal subgroup of G.

[5]

(c) Which two of the following three elements of G lie in the same right coset Hg?
Justify your answer.

k1 =

(
1 3
10 2

)
, k2 =

(
3 1
10 0

)
, k3 =

(
3 2
4 5

)
.

[5]

(d) Find a homorphism φ : G→ R× such that kerφ = H.

[5]

c© Queen Mary University of London (2022) Continue to next page



MTH6106 (2022) Page 5

Question 4 [20 marks]. Let f = (1 2 3 4 5)(6 7)(8 9 10 11) ∈ S11.

(a) Is f even or odd? Please justify your answer!

[5]

(b) Find the order of f .

[5]

(c) Compute f−1.

[5]

(d) Write f as a product of 3-cycles.

[5]
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Question 5 [20 marks]. The group SL2(F3) of 2× 2 matrices with determinant
equal to 1 acts on 2× 2 matrices over F3 by πgm = gm.

(a) Find the stabiliser of m =

(
1 0
0 0

)
.

[5]

(b) For the action from (a), find the orbit of the matrix

(
1 2
1 1

)
.

[5]

(c) Find the the orbit of the matrix m =

(
1 0
0 0

)
and check that the answer is

consistent with the orbit-stabiliser theorem. You may use without proof that
| SL2(F3)| = 24.

[5]

(d) How many 3-Sylow subgroups does SL2(F3) have? You may use that
| SL2(F3)| = 24.

[5]

End of Paper.
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