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• e-mail a copy to maths@qmul.ac.uk with your student number and the module code in
the subject line;
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In this paper, we use the following notation.

• Un is the set of integers between 0 and n which are prime to n, with the group operation
being multiplication modulo n.

• D2n is the group with 2n elements

1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s.

The group operation is determined by the relations rn = s2 = 1 and sr = rn−1s.

• Sn denotes the group of all permutations of {1, . . . , n} (with the group operation being
composition) and An is the subgroup of Sn consisting of all even permutations.

• GL2(R) is the group of invertible 2× 2 matrices over R, with the group operation being
matrix multiplication.

Question 1 [16 marks].

(a) Suppose G is a set with three elements a, b, c, with a binary operation given by the
following table.

a b c
a b a c
b a b c
c c c b

Which of the group axioms G1–G4 does G satisfy? Justify your answer. [5]

(b) Now let

H =

{(
a b
−b a

) ∣∣∣∣ a, b ∈ R, a2 + b2 6= 0
}
∪
{(

c d
d −c

) ∣∣∣∣ c, d ∈ R, c2 + d2 6= 0
}

.

Prove that H is a subgroup of GL2(R). [6]

Now suppose G is a group. Recall that if g ∈ G, the order of g is the smallest positive integer
n such that gn = 1, or ∞ if no such n exists.

(c) Suppose f , g ∈ G satisfy g f = f−1g and ord(g) = 4. What is ord( f g)? Justify your
answer. [5]
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Question 2 [23 marks]. Suppose G is a group.

(a) Suppose f , g ∈ G and H 6 G, and that f ∈ gH. Prove that f H = gH. [5]

(b) Let G = U36, and let H = {1, 17, 19, 35}. List the elements of each right coset of H in G.
[You may assume H 6 G.] [5]

(c) Let x be the 4th digit of your student number. Suppose H 6 D12 and g ∈ D12 such that

Hg = {r, rxs, r4, r3+xs}.

Find all the elements of H. [Explain your reasoning.] [5]

For the rest of this question, let G be the following group of order 21:

G =
{

1, a, a2, a3, a4, a5, a6, b, ab, a2b, a3b, a4b, a5b, a6b, b2, ab2, a2b2, a3b2, a4b2, a5b2, a6b2
}

,

where a is an element of order 7, b is an element of order 3 and ba = a4b.
Let y be the last digit of your student number that isn’t 0 or 7. (For example, if your student
number is 180184370, then y = 3.) Let g = ayb.

(d) Find the elements of 〈g〉, writing them in the form aibj as in the above list. [You may
assume that bar = a4rb for every r ∈ Z.] [5]

(e) Is 〈g〉 a normal subgroup of G? Justify your answer. [3]

Question 3 [14 marks].

(a) Let f , g ∈ S6 be the permutations written in two-line notation as follows.

f =

 1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
3 4 6 2 5 1

 , g =

 1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
5 2 6 3 4 1

 .

Write f , g−1 and f g f−1 in disjoint cycle notation. [5]

(b) Write the permutation h = (1 3)(2 4 6)(5 7 9) as a product of transpositions, and hence
decide whether h is even or odd. [4]

(c) Does S8 contain an element of order 12? Does A8 contain an element of order 12? Justify
your answers, saying which results from the lectures you are using. [5]
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Question 4 [13 marks]. Suppose G is a group. Recall that an automorphism of G is a
bijection φ : G → G such that φ( f g) = φ( f )φ(g) for all f , g ∈ G.
Recall that for g ∈ G we define the automorphism

ρg : G −→ G

h 7−→ ghg−1.

Finally recall that Z(G) denotes the centre of G.

(a) Given f , g ∈ G, show that ρ f = ρg if and only if f−1g ∈ Z(G). [5]

(b) Suppose G = D8. Find g ∈ D8 such that

ρg(r) = r3, ρg(s) = r2s. [4]

(c) Find an automorphism φ of D8 such that φ(s) = r3s. [You should say where each
element of D8 maps to, but you do not need to prove anything.] [4]

Question 5 [22 marks].

(a) A student tried to write down the definition of an action as follows.

Suppose G is a group and X is a set. An action of G on X is a function
π : G → X satisfying the following axioms.

(A1) π1 = idX;
(A2) π f ◦ πg = πg ◦ π f for all f , g ∈ X.

The student’s definition is wrong in three ways. What are the three problems with the
definition? [3]

(b) Give an example of an action of S3 on S3 which has exactly three orbits. Explain briefly
why there are three orbits. [4]

(c) Suppose G is a group and H 6 G. Let X be the set of right cosets of H in G, and define

πg(Hk) = H(kg−1) for all g, k ∈ G.

Prove that πg is well-defined for each g, and that this defines an action. [8]

(d) Suppose we colour the vertices and edges of a square, and we have n colours available.
We say that two colourings are equivalent if we can transform one into the other by
applying a symmetry of the square. How many colourings are there up to equivalence?
[You should carefully explain the method you use, and which results you use from
lectures, as well as carrying out the calculation.] [7]
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Question 6 [12 marks].

(a) Write down two groups of order 27 which are not isomorphic. Explain briefly how you
know they are not isomorphic. [You should define your groups carefully, saying what
the underlying set and group operation are in each case, but you do not have to prove
that they are groups.] [6]

Now suppose G is a finite group and p is a prime number. Recall that G′ is the commutator
subgroup of G.

(b) Suppose G is a finite p-group and G 6= {1}. Using results from the lecture notes, show
that G′ 6= G. [Hint: consider a composition series for G.] [6]

End of Paper.
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