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In this paper, we use the following notation.

• Cn denotes the cyclic group of order n.

• Un is the set of integers between 0 and n which are prime to n, with the group operation
being multiplication modulo n.

• D2n is the group with 2n elements

1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s.

The group operation is determined by the relations rn = s2 = 1 and sr = rn−1s.

• Sn denotes the group of all permutations of {1, . . . , n}, with the group operation being
composition.

• GLn(R) is the group of n× n invertible matrices with entries in R, with the group oper-
ation being matrix multiplication.

• Q8 is the group {1,−1, i,−i, j,−j, k,−k}, in which

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

Question 1 [21 marks].

(a) Give the definition of a group. [3]

(b) Give the definition of a subgroup. [2]

(c) Let

H =

{(
a b
c d

)
∈ GL2(R)

∣∣∣∣ a + c = b + d
}

.

Prove that H is a subgroup of GL2(R). [5]

Suppose G is a group and f , g ∈ G.

(d) Prove that the inverse of g is unique. [4]

(e) Give the definition of the order of g. [2]

(f) Suppose g has order 4, and g f = f−1g. What is the order of f g? [Show your working.] [5]
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Question 2 [18 marks]. Suppose G is a group and f , g ∈ G.

(a) Define what it means to say that f and g are conjugate in G. [2]

(b) Give the definition of the conjugacy class of g in G. [2]

(c) Prove that if f and g are conjugate, then they have the same order. [5]

(d) Find all the elements in the conjugacy class of r3 in D10. [Show your working.] [5]

(e) Write down five different elements of S4 of which no two are conjugate. [You do not need
to prove anything.] [4]

Question 3 [12 marks]. Suppose G is a group, H is a subgroup of G and g ∈ G.

(a) Define what it means to say that H is normal in G. [2]

(b) Give the definition of the right coset Hg. [2]

(c) In the case where H is a normal subgroup of G, prove that Hg = gH. [4]

(d) Now suppose G = U21 and H = {1, 8, 13, 20}. Find all the right cosets of H in G. [4]

Question 4 [17 marks]. Suppose G and H are groups.

(a) Give the definition of a homomorphism from G to H. [2]

(b) Give the definition of an automorphism of G. [2]

(c) Give the definition of the automorphism group of G. [2]

(d) Find all the automorphisms of C8, and find the Cayley table for Aut(C8). [Show your
working.] [7]

(e) Write down an automorphism of Q8 that maps i to −j. [You do not have to prove anything,
but you should say where each element of Q8 maps to.] [4]
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Question 5 [17 marks]. Suppose G is a group and X is a set.

(a) Give the definition of an action of G on X. [3]

(b) Give an example of a non-trivial action of D8 on itself which is not transitive. [You do not
need to prove anything, but you should make it clear how your action is defined.] [3]

Suppose π is an action of G on X, and x ∈ X.

(c) Give the definition of the orbit of x. [2]

(d) Give a precise statement of the Orbit-Counting Lemma. [3]

(e) Suppose we colour the vertices and edges of an equilateral triangle, and we have n
colours available. Say that two colourings are equivalent if one can be transformed into
the other by applying a symmetry of the triangle. Use the Orbit-Counting Lemma to
find the number of colourings up to equivalence. [You should explain how you are using
the Orbit-Counting Lemma as well as carrying out the calculation.] [6]

Question 6 [15 marks]. Suppose G is a finite group and p is a prime number.

(a) Define what it means to say that G is simple. [2]

(b) Give the definition of a Sylow p-subgroup of G. [2]

(c) Find a Sylow 2-subgroup and a Sylow 3-subgroup of U11. [4]

(d) Give a precise statement of Sylow’s Theorem 3 concerning the number of Sylow
p-subgroups of a finite group. [3]

(e) Use this theorem to show that there is no simple group of order 44. [4]

End of Paper.
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