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In this paper, we use the following notation.

• Cn denotes the cyclic group of order n.

• Un is the set of integers between 0 and n which are prime to n, with the group operation
being multiplication modulo n.

• D2n is the group with 2n elements

1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s.

The group operation is determined by the relations rn = s2 = 1 and sr = rn−1s.

• Sn denotes the group of all permutations of {1, . . . , n} (with the group operation being
composition).

• Q8 is the group {1,−1, i,−i, j,−j, k,−k}, in which

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

Question 1. [20 marks]

(a) Give the definition of a group. [3]

Suppose G is a group and f , g ∈ G. In the rest of this question you may use elementary rules
for manipulating powers of elements.

(b) Give the definition of the set �g�, and prove that it is a subgroup of G. [6]

(c) In the case of the group U25, find all the elements of �6�. [4]

(d) Give the definition of the order of g. [2]

(e) Suppose ord( f ) = 3, ord(g) = 4 and g f = f 2g. What is the order of f g? Justify your
answer. [5]
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Question 2. [18 marks]
Suppose G is a group, H, N � G and g ∈ G.

(a) Give the definition of the right coset Hg. [2]

(b) Find all the right cosets of the subgroup {1, 9, 31, 39} in U40. [4]

(c) Define what it means to say that N is normal in G. [2]

(d) Now suppose N is a normal subgroup of G. Give the definition of the set NH, and
prove that NH is a subgroup of G. [6]

(e) Give an example of a group G with N, H � G such that NH is not a subgroup of G. [You
do not have to prove that N and H are subgroups, but you should show that NH is not a
subgroup.] [4]

Question 3. [13 marks]

(a) Give the definition of a transposition in Sn. [2]

(b) Give the definition of the alternating group An. [2]

(c) Suppose h ∈ Sn. Explain how you can use the disjoint cycle notation for h to find the
order of h and to find whether h ∈ An. [You do not need to prove anything.] [4]

(d) Find an element of order 12 in A9, and write this element as a product of 3-cycles. [You
do not need to prove anything.] [5]

Question 4. [20 marks]
Suppose G and H are groups.

(a) Give the definition of a homomorphism from G to H. [2]

(b) Does there exist a homomorphism φ : Q8 → S4 such that φ(i) = (1 2 3 4) and
φ(j) = (4 3 2 1)? Justify your answer. [5]

(c) Suppose φ : G → H is a homomorphism. Give the definition of the image and kernel
of φ. [4]

(d) Give a precise statement of the First Isomorphism Theorem. [3]

(e) Use the First Isomorphism Theorem to show that there is a normal subgroup K of C15
such that C15/K ∼= C5. [6]
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Question 5. [19 marks]

(a) Suppose G is a group and X is a set. Give the definition of an action of G on X. [3]

(b) Given an example of a transitive action of Q8 on Q8. [You do not need to prove anything,
but you should say clearly how the action is defined.] [3]

(c) Suppose π is an action of G on X, and x ∈ X. Give the definition of the orbit
containing x and the stabiliser of x. [4]

(d) Give a precise statement of the Orbit-Stabiliser Theorem. [3]

(e) Now let G be the symmetry group of a triangular prism (with the triangular faces being
equilateral):

What is |G|? Justify your answer. [6]

Question 6. [10 marks]
Suppose G is a finite group and p is a prime number.

(a) Give the definition of a Sylow p-subgroup of G. [2]

(b) Find a Sylow 2-subgroup of D20. [4]

(c) Is this subgroup normal? Justify your answer. [4]

End of Paper.
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