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In this paper, we use the following notation.

• V4 denotes the group {1, a, b, c}, with group operation given by

a2 = b2 = c2 = 1, ab = ba = c, ac = ca = b, bc = cb = a.

• Un is the set of integers between 0 and n which are prime to n, with the group operation
being multiplication modulo n.

• D2n is the group with 2n elements

1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s.

The group operation is determined by the relations rn = s2 = 1 and sr = rn−1s.

• Sn denotes the group of all permutations of {1, . . . , n} (with the group operation being
composition). An is the subgroup of Sn consisting of all even permutations.

Question 1. [20 marks]

(a) Give the definition of a group. [3]

(b) Let

H =

{(
cos x sin x
− sin x cos x

) ∣∣∣∣ x ∈ R
}

.

Prove that H is a group under matrix multiplication. [You may use standard facts about
matrix multiplication.] [6]

Suppose G is a group and g ∈ G.

(c) Give the definition of the order of g. [2]

(d) Suppose ord(g) = 10 and m ∈ N. Prove that if gm = 1, then m is divisible by 10. [You
may use standard rules for manipulating powers.] [5]

(e) Give an example of a group G and two elements g, h ∈ G such that ord(g) = ord(h) = 2
and ord(gh) = 5. [You do not need to prove anything.] [4]
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Question 2. [16 marks] Suppose G is a group.

(a) Suppose f , g ∈ G. Define what it means to say that f and g are conjugate in G. [2]

(b) Prove that conjugacy is an equivalence relation on G. [4]

(c) Give the definition of a normal subgroup of G. [You do not need to define what a subgroup
is.] [2]

(d) Suppose N is a normal subgroup of G. Give the definition of the quotient group G/N.
[You do not need to prove anything, but you should say how the group operation on G/N is
defined.] [2]

(e) In the case where G = D12 and N = {1, r2, r4}, write down the cosets of N in G and the
Cayley table for G/N. [You may assume that N is a normal subgroup of G.] [6]

Question 3. [18 marks]

(a) Explain how to write an element f ∈ Sn in disjoint cycle notation. [3]

(b) List three advantages of using disjoint cycle notation for permutations. [3]

(c) Prove that if n > 3, then Z(Sn) contains only the identity element. [5]

(d) Prove that every element of An can be written as a product of 3-cycles. Write

(1 2 3 4)(5 6 7 8 9)(10 11 12 13)

as a product of 3-cycles. [7]

Question 4. [15 marks] Suppose G and H are groups.

(a) Give the definition of a homomorphism from G to H. [2]

(b) Does there exist a homomorphism φ : U20 → U20 such that φ(3) = 7 and φ(7) = 11?
Justify your answer. [5]

Suppose φ : G → H is a homomorphism.

(c) Give the definition of the kernel and the image of φ. [4]

(d) Write down a homomorphism φ : V4 → V4 such that im(φ) = ker(φ). [You do not need to
prove anything, but you should say where each element of V4 maps to.] [4]
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Question 5. [21 marks]

(a) Suppose G is a group and X is a set. Give the definition of an action of G on X. [3]

(b) Suppose π is an action of G on X, and x ∈ X. Give the definition of the orbit of π
containing x. [2]

(c) Give two examples of actions of D8 on itself, one of which is transitive, and the other
not transitive. [You should say clearly how the actions are defined and which one is transitive,
but you do not need to prove anything.] [5]

(d) Give a precise statement of the Orbit-Counting Lemma. [3]

(e) Suppose we colour the vertices and edges of a square, and we have n colours available.
Say that two colourings are equivalent if one can be transformed into the other by a
symmetry of the square. How many colourings are there up to equivalence? Justify
your answer. [8]

Question 6. [10 marks] Suppose G is a group.

(a) Define what it means to say that G is simple. [2]

(b) Define what is meant by a composition series for G. [3]

(c) Find a composition series for D20. [You do not need to prove anything.] [5]

End of Paper.
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