Main Examination period 2023 - January - Semester A

MTH5123: Differential Equations

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: G. Bianconi, I. Tomasic

Question 1 [18 marks].
(a) Find the general solution of the the second-order linear ODE

$$
2 y^{\prime \prime}-5 y^{\prime}-3 y=0 .
$$

(b) Find the general solution of the inhomogeneous second-order linear ODE

$$
2 y^{\prime \prime}-5 y^{\prime}-3 y=10 \sin x
$$

(c) Find the solution to the Initial Value Problem

$$
2 y^{\prime \prime}-5 y^{\prime}-3 y=10 \sin x, \quad y(0)=4, \quad y^{\prime}(0)=1
$$

Question 2 [26 marks].

(a) Check whether the IVP

$$
y^{\prime}=\frac{x}{y-4}, \quad y(0)=4
$$

satisfies the hypotheses of the Picard-Lindelöf theorem.
(b) Find all the solutions of the IVP defined in (a). Is this result in contradiction with the result obtained in (a)? Explain your answer.
(c) Determine the smallest $b>0$ such that the BVP

$$
2 y^{\prime \prime}-18 y=\tanh (x), \quad y(0)=0, y^{\prime}(b)=3,
$$

does not have a unique solution.

Question 3 [26 marks].

(a) Find the general solution of the motion of a mass attached to the ceiling by a spring in presence of friction, i.e. solve the ODE

$$
m \ddot{y}=m g-k(y-l)-\gamma \dot{y} .
$$

with $m=1, k=3, \gamma=2, g=10, l=5$, where y indicates the distance of the mass from the ceiling.
(b) What is the limit $\lim _{t \rightarrow \infty} y(t)$ for the motion of the mass described in (a)?

Describe in words the asymptotic dynamical behaviour of the mass for $t \rightarrow \infty$.
(c) Determine whether the differential equation

$$
\begin{equation*}
\frac{1}{2} y^{2}+y \cos (x)+\left(y x+\sin (x)-e^{y}\right) y^{\prime}=0 \tag{14}
\end{equation*}
$$

is exact. If it is exact, find its general solution in explicit form.

Question 4 [30 marks].

Consider a system of two nonlinear first-order ODEs, where x and y are functions of the independent variable t :

$$
\dot{x}=2 \tanh (x)-2 x \cos (y)+e^{x+3 y}-1, \quad \dot{y}=3 \cosh (x)-3 e^{x y}+\frac{1}{2} y+\frac{1}{2} \sin (x) .
$$

(a) Write down in matrix form of the type $\dot{\mathbf{X}}=A \mathbf{X}$ with $\mathbf{X}=(x, y)^{\top}$ the system obtained by linearisation of the above equations around the point $x=y=0$. Specify the elements of the matrix A.
(b) Find the eigenvalues and eigenvectors of the matrix A obtained in (a). Write down the general solution of the linear system.
(c) What type of fixed point is the equilibrium solution $x=y=0$? Sketch the phase portrait of the linear system.
(d) Find the solution of the linear system corresponding to the initial conditions $x(0)=1, y(0)=0$. Determine the values $\lim _{t \rightarrow \infty} x(t)$ and $\lim _{t \rightarrow \infty} y(t)$.

Picard-Lindelöf Theorem.

Let \mathcal{D} be the rectangular domain in the $x y$ plane defined as $\mathcal{D}=(|x-a| \leq A,|y-b| \leq B)$ and suppose $f(x, y)$ is a function defined on \mathcal{D} which satisfies the following conditions:
(i) $f(x, y)$ is continuous and therefore bounded in \mathcal{D}
(ii) the parameters A and B satisfy $A \leq B / M$ where $M=\max _{\mathcal{D}}|f(x, y)|$
(iii) $\left|\frac{\partial f}{\partial y}\right|$ is bounded in \mathcal{D}.

Then there exists a unique solution on \mathcal{D} to the initial value problem

$$
\frac{d y}{d x}=f(x, y), \quad y(a)=b
$$

Exact first-order ODEs:

If the equation

$$
P(x, y)+Q(x, y) \frac{d y}{d x}=0
$$

is exact, its solution can be found in the form $F(x, y)=$ Const. where

$$
P=\frac{\partial F}{\partial x} \quad \text { and } \quad Q=\frac{\partial F}{\partial y}
$$

Some derivatives

In the table below, some derivatives are listed

$f(x)$	$f^{\prime}(x)$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$1 / \cos ^{2} x$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$1 / \cosh ^{2} x$
$\log x$	$\frac{1}{x}$

End of Appendix.

(C) Queen Mary University of London (2023)

