## 8 QMplus maintenance

QMplus maintenance: There is a short QMplus outage planned for Tuesday, 23rd November 2021 between 9pm-11pm while we maintain our systems.

More information: https://elearning.qmul.ac.uk/announcements/qmplus-scheduled-maintanance-23rd-nov-at-9pm/

## MTH5123 - DIFFERENTIAL EQUATIONS - 2021/22

$>$ MTH5123-Differential Equations-2021/22 > General > Semester A assessment for year 2021-2022 > Preview

## YOU CAN PREVIEW THIS QUIZ, BUT IF THIS WERE A REAL ATTEMPT, YOU WOULD BE BLOCKED BECAUSE:

This quiz is not currently available

## QUESTION 1

Not yet answered Marked out of 20.0

For each multiple choice question select only one of the options:
a) Which of the following ordinary differential equations (ODEs) has $t$ as the independent variable and can be solved by the separation of variables method? (4 marks)
OI OII OIII OIV
where I: $\frac{d y}{d x}=e^{y} \sin (y)$, II: $\dot{y}=t+e^{t+y}$, III: $\dot{y}=t^{2} \cos (y+5)$, IV: $\dot{y}=e^{t^{2}+y}$
b) Which of the following ODEs is not separable but can be reduced to be separable? (4 marks)
OI Oll OIII
where I: $y^{\prime}=3 \ln (y)-3 \ln (x)+10 \frac{y}{x}$, II: $y^{\prime}=\tanh \left((y / x)^{2}\right)+2 e^{x / y}$, III: $\dot{y}=(t+3 y) t$.
c) Which of the following statements is correct for solving the ODE, $\dot{x}=3 \cos (5 x+7 t-2)$ ? (4 marks)

| OThe ODE can be reduced | OThis is an inhomogeneous linear ODE that can be solved by | OThe method to solve exact |
| :--- | :--- | :--- |
| to be separable; | the variation of parameter method; | ODEs can be applied; |

d) The solution to the initial value problem $y^{\prime}=\frac{3}{\sin (y)}, y(0)=\pi / 2$ is, ( 8 marks)
Oı OII OIII OIV
where
$\mathrm{I}: y(x)=\arcsin (C+3 x)$, where $C$ is an arbitrary constant,
II: $y(x)=\arcsin (C-3 x)$, where $C$ is an arbitrary constant,
III: $y(x)=\arccos (3 x)$
IV: $y(x)=\arccos (-3 x)$
rina the rignt match ror the roliowing UUES in the aropaown menu

| $y^{\prime \prime}=5 x+3 y+2$ |
| :--- |
| Choose... |
| $y=y^{\prime \prime} \sin (x)+e^{x}+2$ |
| Choose... |
| $3 x y^{\prime}=y-2 x^{2} y^{\prime \prime}$ |
| Choose... |
| $\dot{y}=e^{t}+t^{2} y$ |
| Choose... |
| $y^{\prime}=\sin (x / y)$ |

## QUESTION 3

a) Consider the initial value problem (IVP) $y^{\prime}=y x /\left(x^{2}-1\right), \quad y(0)=1$. Does this IVP satisfy the hypotheses of the PicardLindelöf theorem? ( 5 marks)

Ores because the function $f(x, y)=y x /\left(x^{2}-1\right)$ is continuous in a sufficiently small rectangular region $D$ centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(0,1)$.

ONo because the function $f(x, y)=y x /\left(x^{2}-1\right)$ is not continuous in a sufficiently small rectangular region $D$ centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(0,1)$.
OYes because the function $f(x, y)=y x /\left(x^{2}-1\right)$ and its partial derivative $\partial f(x, y) / \partial y$ are continuous in a sufficiently small rectangular region $D$ centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(0,1)$.
ONo because neither the function $f(x, y)=y x /\left(x^{2}-1\right)$ nor its partial derivative $\partial f(x, y) / \partial y$ are continuous in a sufficiently small rectangular region $D$ centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(0,1)$.
b) What is the solution to the initial value problem in point (a) valid sufficiently close to the initial condition? (5 marks)

O
OII
OIII
where I: $y(x)=2 \sqrt{\left|x^{2}-1\right|}$, II: $y(x)=\sqrt{x^{2}-1}$, III: $y(x)=\sqrt{1-x^{2}}$.
c) Consider the initial value problem (IVP) $y^{\prime}=y x /\left(x^{2}-1\right), \quad y(1)=0$. Does this IVP satisfy the hypotheses of the PicardLindelöf theorem? (5 marks)

OYes because the function $f(x, y)=y x /\left(x^{2}-1\right)$ is continuous in a sufficiently small rectangular region $D$ centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(1,0)$.

ONo because the function $f(x, y)=y x /\left(x^{2}-1\right)$ is not continuous in a sufficiently small rectangular region $D$ centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(1,0)$.
OYes because the function $f(x, y)=y x /\left(x^{2}-1\right)$ and its partial derivative $\partial f(x, y) / \partial y$ are continuous in a sufficiently small rectangular region $D$ centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(1,0)$.
d) How many solutions does the IVP in point (d) have? ( 5 marks)

## ONone

O1
$\mathrm{O}_{2}$
Olnfinitely many
(a) Consıaer the pounaary vaıue prodiem (bvf) $5 y+4 \supset y=-\tan (/ x), y(\mathrm{U})=\mathrm{u}, y(\pi / 1)=1$. voes tnis bvr nave a unıque solution ? (5 marks)

Oyes
ONo
Olt is impossible to determine the ODE cannot be solved.
(b) For which real value of $b$ the following BVP $5 y^{\prime \prime}=-45 y+\cos (3 b), y(0)=0, y(\pi / 3)=-5$ has a unique solution ? (5 marks)

Ob $b=n \pi / 2$ with $n$ integer OAny value of $b \quad$ ONo value of $b$

## QUESTION 5

(a) Consider a system of two ordinary differential equations: $\dot{y}_{1}=\tan \left(\frac{1}{2} y_{1}-y_{2}\right)-y_{2}^{2}, \quad \dot{y}_{2}=\sin \left(y_{1}\right)+\frac{1}{2} \sin \left(y_{2}\right)$.

Linearise the system of ODE close to the $\left(y_{1}, y_{2}\right)=(0,0)$ equilibrium. The phase portrait of the linearised system displays a: (5 marks)

OStable node OUnstable node OSaddle OUnstable focus with spiral out OCentre OStable focus with spiral in
(b) For which real value of $a$ the system of ODEs
$\dot{y}_{1}=\sin \left(a y_{2}+2 y_{1}\right), \quad \dot{y_{2}}=-\tanh \left(y_{1}+a y_{2}\right)$ when linearised displays a saddle at $\left(y_{1}, y_{2}\right)=(0,0) ?$ (5 marks)
$\bigcirc a<2$
$\bigcirc a>0$
$\bigcirc a<-2$
$\bigcirc a<0$

## inis question requires an nanawriten answer wnicn snouta de upioadea nere in a the rormat or a singie compinea par.

a) Consider the ODE describing the motion of a pendulum in presence of friction. Let $\theta$ indicate the angle of the pendulum with respect to the vertical line and let $t$ indicate the time.
The ODE describing the motion of the pendulum is given by

$$
m \ell \ddot{\theta}=-m g \sin \theta-\gamma \dot{\theta}
$$

with $\theta \in[-\pi / 2, \pi / 2]$. Here $m>0$ indicates the mass of the pendulum, $\ell>0$ indicates its length, $g>0$ indicates the gravitational constant, and $\gamma \geq 0$ is a constant real parameter indicating the intensity of the friction.

- Identify the dependent and independent variable in this ODE. (1 mark)
- Is this a linear or non-linear ODE? (2 marks)
- What is the order of this ODE? (2 marks)
b) Consider again the ODE introduced in point (a) and describing the motion of the pendulum

$$
m \ell \ddot{\theta}=-m g \sin \theta-\gamma \dot{\theta}
$$

with $\theta \in[-\pi / 2, \pi / 2]$. Put $m=1$ and $\ell=1$.

- Convert this ODE into a system of two first-order ODEs. (4 marks)
- Compute all equilibria of this system of ODEs.

Linearise this system of ODE around each equilibrium.
Find the eigenvalues of the linearised system around each equilibrium. (9 marks)

- Assume that $g>0$ is constant but that $\gamma \geq 0$ can be tuned.

For which values of $\gamma$ are the phase portraits of the linearised systems fixed points?
For which values of $\gamma$ are the phase portraits of the linearised systems stable focuses?
For which values of $\gamma$ are the phase portraits of the linearised systems centres? (9 marks)

- Explain the meaning of your results. (3 marks)


[^0]QMplus Media

QMplus Hub

QMplus Archive


[^0]:    Jump to...

