A P <u>0</u>

×

QMplus maintenance

QMplus maintenance: There is a short QMplus outage planned for Tuesday, 23rd November 2021 between 9pm-11pm while we maintain our systems.

More information: https://elearning.qmul.ac.uk/announcements/qmplus-scheduled-maintanance-23rd-nov-at-9pm/

MTH5123 - DIFFERENTIAL EQUATIONS - 2021/22

♠ > MTH5123 - Differential Equations - 2021/22 > General > Semester A assessment for year 2021-2022 > Preview

YOU CAN PREVIEW THIS QUIZ, BUT IF THIS WERE A REAL ATTEMPT, YOU WOULD BE BLOCKED BECAUSE:

This quiz is not currently available

QUESTION 1			Not yet answered Marked out of 20.0	
For each multiple choice que a) Which of the following orce separation of variables methe	uestion select only one of the dinary differential equations (C nod? (4 marks)	e options: DDEs) has <i>t</i> as the independent varia	ble and can be solved by the	
\bigcirc I	OII	OIII	OIV	
where I: $\frac{dy}{dx} = e^y \sin(y)$, II:	$\dot{y} = t + e^{t+y}$, III: $\dot{y} = t^2 \cos^2 t$	$s(y+5)$, IV: $\dot{y} = e^{t^2+y}$		
b) Which of the following ODEs is not separable but can be reduced to be separable? (4 marks)				
OI	OII	OIII		
where I: $y' = 3 \ln(y) - 3 \ln(y)$	$h(x) + 10\frac{y}{x}$, II: $y' = tanh((y, x))$	$(x)^{2}$) + 2 $e^{x/y}$, III: $\dot{y} = (t + 3y)t$.		
c) Which of the following statements is correct for solving the ODE, $\dot{x} = 3\cos(5x + 7t - 2)$? (4 marks)				
OThe ODE can be reduced to be separable;	OThis is an inhomogeneou the variation of parameter	is linear ODE that can be solved by method;	OThe method to solve exact ODEs can be applied;	
d) The solution to the initial	value problem $y' = \frac{3}{\sin(y)}, y(0)$	$0) = \pi/2 \text{ is, (8 marks)}$		
OI	OII	OIII	OIV	
where $I:y(x) = \arcsin(C + 3x), w$ $II:y(x) = \arcsin(C - 3x), w$ $III:y(x) = \arccos(3x)$ $IV:y(x) = \arccos(-3x)$	where C is an arbitrary constant where C is an arbitrary constant C is an arbitrary constant C	ant, tant,		

Find the right match for the following ODEs in the dropadwn menu y'' = 5x + 3y + 2 $y = y'' \sin(x) + e^{x} + 2$ (choose...) $3xy' = y - 2x^{2}y''$ (choose...) $\dot{y} = e^{t} + t^{2}y$ (choose...) $y' = \sin(x/y)$ (choose...)

QUESTION 3

Not yet answered Marked out of 20.0

a) Consider the initial value problem (IVP) $y' = yx/(x^2 - 1)$, y(0) = 1. Does this IVP satisfy the hypotheses of the Picard-Lindelöf theorem? (5 marks)

OYes because the function $f(x, y) = yx/(x^2 - 1)$ is continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.

ONo because the function $f(x, y) = yx/(x^2 - 1)$ is not continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.

OYes because the function $f(x, y) = yx/(x^2 - 1)$ and its partial derivative $\partial f(x, y)/\partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.

ONo because neither the function $f(x, y) = yx/(x^2 - 1)$ nor its partial derivative $\partial f(x, y)/\partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.

b) What is the solution to the initial value problem in point (a) valid sufficiently close to the initial condition? (5 marks)

 \bigcirc

 \bigcirc II

 \bigcirc III

where I: $y(x) = 2\sqrt{|x^2 - 1|}$, II: $y(x) = \sqrt{x^2 - 1}$, III: $y(x) = \sqrt{1 - x^2}$.

c) Consider the initial value problem (IVP) $y' = yx/(x^2 - 1)$, y(1) = 0. Does this IVP satisfy the hypotheses of the Picard-Lindelöf theorem? (5 marks)

OYes because the function $f(x, y) = yx/(x^2 - 1)$ is continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (1, 0)$.

ONo because the function $f(x, y) = yx/(x^2 - 1)$ is not continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (1, 0)$.

Over because the function $f(x, y) = yx/(x^2 - 1)$ and its partial derivative $\partial f(x, y)/\partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (1, 0)$.

d) How many solutions does the IVP in point (d) have? (5 marks)

ONone

 $\bigcirc 1$

O2

OInfinitely many

8 (a) Consider the boundary value problem (BVP) $\Im y^+ + 4\Im y = -\tan(\pi/x)$, y(0) = 0, $y(\pi/\pi) = 1$. Does this BVP have a unique solution? (5 marks) OYes ONo Olt is impossible to determine the ODE cannot be solved. (b) For which real value of *b* the following BVP $5y'' = -45y + \cos(3b)$, y(0) = 0, $y(\pi/3) = -5$ has a unique solution ? (5 marks) $\bigcirc b = n\pi/2$ with *n* integer $\bigcirc b \neq n\pi/2$ with *n* integer ⊖Any value of *b* \bigcirc No value of b**QUESTION 5** Not yet answered Marked out of 10.0 (a) Consider a system of two ordinary differential equations: $\dot{y_1} = \tan(\frac{1}{2}y_1 - y_2) - y_2^2$, $\dot{y_2} = \sin(y_1) + \frac{1}{2}\sin(y_2)$. Linearise the system of ODE close to the $(y_1, y_2) = (0, 0)$ equilibrium. The phase portrait of the linearised system displays a: (5 marks) OStable node OUnstable node OSaddle OUnstable focus with spiral out OCentre OStable focus with spiral in (b) For which real value of *a* the system of ODEs $\dot{y}_1 = \sin(ay_2 + 2y_1), \quad \dot{y}_2 = -\tanh(y_1 + ay_2)$ when linearised displays a saddle at $(y_1, y_2) = (0, 0)$? (5 marks) $\bigcirc a < 2$ $\bigcirc a > 0$ $\bigcirc a < -2$ $\bigcirc a < 0$

I his question requires an nandwritten answer which should be uploaded here in a the format of a single combined pat.

a) Consider the ODE describing the motion of a pendulum in presence of friction. Let θ indicate the angle of the pendulum with respect to the vertical line and let *t* indicate the time.

The ODE describing the motion of the pendulum is given by

$$m\ell\theta = -mg\sin\theta - \gamma\theta,$$

with $\theta \in [-\pi/2, \pi/2]$. Here m > 0 indicates the mass of the pendulum, $\ell > 0$ indicates its length, g > 0 indicates the gravitational constant, and $\gamma \ge 0$ is a constant real parameter indicating the intensity of the friction.

- Identify the dependent and independent variable in this ODE. (1 mark)
- Is this a linear or non-linear ODE? (2 marks)
- What is the order of this ODE? (2 marks)

b) Consider again the ODE introduced in point (a) and describing the motion of the pendulum

$$m\ell\dot{\theta} = -mg\sin\theta - \gamma\dot{\theta}$$

with $\theta \in [-\pi/2, \pi/2]$. Put m = 1 and $\ell = 1$.

- Convert this ODE into a system of two first-order ODEs. (4 marks)
- Compute all equilibria of this system of ODEs.
 Linearise this system of ODE around each equilibrium.
 Find the eigenvalues of the linearised system around each equilibrium. (9 marks)
- Assume that g > 0 is constant but that $\gamma \ge 0$ can be tuned. For which values of γ are the phase portraits of the linearised systems fixed points? For which values of γ are the phase portraits of the linearised systems stable focuses? For which values of γ are the phase portraits of the linearised systems centres? (9 marks)
- Explain the meaning of your results. (3 marks)

X T;▼ Ff ▼ A _A ▼ Q ▼ Q B I I I I	<u>₭</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
🎄 🧿 H-P	

Jump to ...

Late Summer Reassessement year 2021-2022 (hidden)

A P <u>0</u>

QMplus Media

QMplus Hub

QMplus Archive