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Question 1. [26 marks] Suppose that X and Y are two random variables.

(a) State the definition of independence of two random variables X and Y . [3]

(b) Suppose that the joint density function fX,Y is given by

fX,Y (x, y) =

{
3
4
y if 0 < y < x < 2,

0 otherwise.

(i) Find the marginal density functions fX(x) and fY (y). [8]

(ii) Find the probability P (X ∈ [0, 1] and Y ∈ [0, 1]). [6]

(iii) Are X and Y independent? Justify your answer. [3]

(iv) Find the conditional density function fY |X=x(y) and compute E(Y 3|X). [6]

Question 2. [28 marks] A random walk on a line starts from n, where M 6 n 6 N .
The probability of a jump to the right is p and the probability of a jump to the left is
q = 1− p. The walk stops once it reaches M or N .

(a) Suppose that p = 2/5, q = 3/5, the random walk starts from position 0, and
N = 3 (in other words, the walk is on (−∞, 3]). What is the probability that this
walk reaches 3? [10]

Hint. You may use, without proof, the formula for rn, the probability that the
walk starting from n reaches N before M .

(b) Suppose that a random walk is starting from n, 0 6 n 6 N . Let Tn be the time
the walk takes to reach 0 or N and En be the expected duration of the walk (that
is En = E(Tn)). Prove that

E0 = EN = 0,

En = pEn+1 + qEn−1 + 1 for 0 < n < N. [15]

(c) Write down (do not prove) the formula for En in the case p = q = 1
2
. [3]
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Question 3. [18 marks] Let Y0 = 1, Y1, Y2, . . . be a branching process generated by a
random variable X with mean µ.

(a) Suppose that X has distribution P(X = 0) = 1
4
, P(X = 1) = 1

4
and

P(X = 2) = 1
2
.

(i) State the theorem which allows one to compute E(Yn) in terms of the mean
value µ of X. Hence compute E(Y3). [3]

(ii) Explain how one can find the probability of extinction of a branching process
and compute this probability. [5]

(b) (i) State Markov’s inequality. [3]

(ii) Use Markov’s inequality to prove that if µ < 1 then the probability of
extinction of the branching process is 1. [7]

Question 4. [16 marks] Let N(t) be a Poisson process with intensity λ > 0
describing the number of customers arriving at a service station during time t.

(a) Give the definition of a Poisson process with intensity λ > 0. [5]

(b) Find the probability that there will be 3 arrivals between times 0 and 2 and no
arrivals between times 1 and 3. [4]

(c) Let T2 be the time of the second arrival of a Poisson process. Prove that the
probability density function of T2 is given by

fT2(x) =

{
λ2xe−λx if x > 0,

0 if x 6 0.
[7]

Question 5. [12 marks]

(a) State (do not prove) the Law of Large Numbers. [4]

(b) Suppose that you roll a fair die repeatedly. Let Sn be the number of 5’s or 6’s I
see. Prove that

lim
n→∞

P(0.3n < Sn < 0.4n) = 1 [8]

End of Paper.
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