Main Examination period 2022 - May/June - Semester B

## MTH5120: Statistical Modelling I

You should attempt ALL questions. Marks available are shown next to the questions.

## In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

All work should be handwritten and should include your student number.
The exam is available for a period of $\mathbf{2 4}$ hours. Upon accessing the exam, you will have 3 hours in which to complete and submit this assessment.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;
- with your e-mail, include a photograph of the first page of your work together with either yourself or your student ID card.

Please try to upload your work well before the end of the submission window, in case you experience computer problems. Only one attempt is allowed - once you have submitted your work, it is final.

IFoA exemptions. For actuarial students, this module counts towards IFoA actuarial exemptions. To be eligible for IFoA exemption, your must submit your exam within the first 3 hours of the assessment period.

Examiners: L. Shaheen, A. Zincenko

Question 1 [ 25 marks]. A baker is interested to find the relationship between the width of the shelf space for her brand of cookies ( $x$, in feet) and monthly sales $(y)$ of the product in a supermarket. Hence, she fits a model relating monthly sales $y$ to the amount of shelf space $x$ her cookies receive that month. That is, she is fitting the model in the following way

$$
y=\beta_{0}+\beta_{1} x+\epsilon
$$

where $\epsilon \sim N\left(0, \sigma^{2}\right)$.

| $x$ (shelf space) | $y$ (weekly sales) |
| :---: | :---: |
| 3 | 535 |
| 2 | 425 |
| 6 | 575 |
| 5 | 639 |
| 3 | 450 |
| 8 | 630 |
| 4 | 435 |
| 2 | 498 |
| 6 | 534 |
| 3 | 530 |
| 2 | 457 |
| 7 | 559 |

weekly sales VS shelf space


Using R, we obtained the following output.

```
> mody <- lm(y ~ x)
> summary(mody)
Call:
lm(formula = y ~ x)
Residuals:
        Min 1Q Median 3Q Max
-67.022 -31.346 -0.631 33.654 54.734
Coefficients:
                                    Estimate Std. Error t value Pr(>|t|)
(Intercept) 429.048 26.519 16.179 1.69e-08 ***
x 18.244 5.643 3.233 0.00898 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 39.2 on 10 degrees of freedom
Multiple R-squared: 0.511, Adjusted R-squared: 0.4621
F-statistic: 10.45 on 1 and 10 DF, p-value: 0.008979
> anova(mody)
Analysis of Variance Table
Response: y
```

```
    Df Sum Sq Mean Sq F value Pr(>F)
x 1 16059 16058.9 10.451 0.008979 **
Residuals 10 15366 1536.6
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Use the R output above to answer the questions below.
(a) By looking at the summary output, write down the fitted model.
(b) Write down the formula to compute the $95 \%$ confidence interval for $\beta_{1}$.
(c) Compute the $95 \%$ confidence interval for $\beta_{1}$.
(d) Fill in the blanks in the following table.

| Source of Variation | D F | Sum of Squares | Mean Square | F Value |
| :---: | :---: | :---: | :---: | :---: |
| Regression | 1 | SSR $=16059$ | MSR $=16058.9$ | $?$ |
| Residual | $12-?=?$ | SSE $=?$ | MSE $=\frac{15366}{?}=?$ |  |

(e) (i) Write down the null hypothesis, that there is no effect on mean sales from increasing the amount of shelf space, versus a suitable alternative hypothesis.
(ii) Compare the above value of F with the table value $\mathcal{F}_{10}^{1}(0.01)$.
(iii) Comment on your findings.

Question 2 [ $\mathbf{1 5}$ marks]. The thickness $(x)$ and hardness $(y)$ of 36 woods are plotted in the graph below. We are interested in establishing the relationship between the $y$ and $x$ values. For these data, using R, we obtained the following output.

```
> mody1 <- lm(y ~ x)
> summary(mody1)
Call:
lm(formula = y ~ x)
Residuals:
    Min 1Q Median 3Q Max
-417.10 -142.03 -13.83 103.70 814.42
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -1298.282 139.496 -9.307 7.1e-11
x 61.127 2.927 20.882 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 235.2 on 34 degrees of freedom
Multiple R-squared: 0.9277,Adjusted R-squared: 0.9255
F-statistic: 436 on 1 and 34 DF, p-value: < 2.2e-16
```

```
> shapiro.test(stdres1)
    Shapiro-Wilk normality test
data: stdres1
W = 0.9051, p-value = 0.004718
```





Std res vs fits

(a) Looking at the value of $R^{2}$ above, is this linear model a reasonable fit?
(b) Viewing the residual plot, is there a possible problem with the constancy of variance? Give reasons for your answer.
(c) Using the Q-Q plot and the Shapiro-Wilk test, check if there is a possible problem with the assumption of normality.
(d) Looking at the plots above, is there any other transformation that you would like to consider? Give reasons for your answer.

## Question 3 [20 marks].

(a) Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables from a normal distribution with unknown mean $\mu$ and unknown variance $\sigma^{2}$. We are interested in finding the maximum likelihood estimates of $\mu$ and $\sigma^{2}$. Now let $\widehat{\mu}$ and $\widehat{\sigma^{2}}$ be the maximum likelihood estimates for $\mu$ and $\sigma^{2}$. The probability density function of $X_{i}$ is given by

$$
f\left(x_{i} ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}}
$$

for $-\infty<\mu<\infty, 0<\sigma^{2}<\infty$ and $i=1,2, \ldots, n$.
Prove that

$$
\widehat{\mu}=\frac{\sum_{i=1}^{n} x_{i}}{n} \text { and } \widehat{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2}}{n} .
$$

(b) Assume that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent normal random variables with mean $\mu=\beta_{0}+\beta_{1} x_{i}$ and variance $\sigma^{2}$. The probability density function of $Y_{i}$ is given by

$$
g\left(y_{i} ; \beta_{0}, \beta_{1}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left\{y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right\}^{2}}{2 \sigma^{2}}} .
$$

Prove that the values of the maximum likelihood estimates are

$$
\begin{gathered}
\widehat{\beta}_{0}=\bar{y}-\widehat{\beta_{1}} \bar{x}, \\
\widehat{\beta_{1}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{S_{x y}}{S_{x x}}
\end{gathered}
$$

and

$$
\widehat{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(\widehat{\beta_{0}}+\widehat{\beta_{1}} x_{i}\right)^{2} .\right.
$$

Question 4 [ $\mathbf{2 5}$ marks]. A statistician is employed by a car industry. They wish to establish the relationship between a set of predictors and an outcome variable, which is mpg (miles per gallon) in this case. The original dataset is a data frame of 32 observations and 11 variables. Below is a snippet of the dataset.

|  | mpg cyl | disp | hp | drat | wt | qsec | vs | am gear carb |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mazda RX4 | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.620 | 16.46 | 0 | 1 | 4 | 4 |
| Mazda RX4 Wag | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |
| Datsun 710 | 22.8 | 4 | 108.0 | 93 | 3.85 | 2.320 | 18.61 | 1 | 1 | 4 | 1 |
| Hornet 4 Drive | 21.4 | 6 | 258.0 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 |
| Hornet Sportabout | 18.7 | 8 | 360.0 | 175 | 3.15 | 3.440 | 17.02 | 0 | 0 | 3 | 2 |
| Valiant | 18.1 | 6 | 225.0 | 105 | 2.76 | 3.460 | 20.22 | 1 | 0 | 3 | 1 |
| Duster 360 | 14.3 | 8 | 360.0 | 245 | 3.21 | 3.570 | 15.84 | 0 | 0 | 3 | 4 |
| Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.190 | 20.00 | 1 | 0 | 4 | 2 |
| Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.150 | 22.90 | 1 | 0 | 4 | 2 |
| Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.440 | 18.30 | 1 | 0 | 4 | 4 |
| Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.440 | 18.90 | 1 | 0 | 4 | 4 |
| Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.070 | 17.40 | 0 | 0 | 3 | 3 |
| Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.730 | 17.60 | 0 | 0 | 3 | 3 |
| Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.780 | 18.00 | 0 | 0 | 3 | 3 |

(a) The forward method for selecting the optimal set of predictors can use the AIC or BIC. Describe the model selection method, including the definition of the AIC and BIC.
(b) In the R output below, mpg is miles per gallon, wt is weight, cyl is number of cylinders, hp is gross horsepower.

Call:
lm(formula $=\mathrm{mpg}{ }^{\sim} \mathrm{wt}+\mathrm{cyl}+\mathrm{hp}$, data = mtcars)
Coefficients:
(Intercept) wt cyl hp
$38.75179 \quad-3.16697 \quad-0.94162 \quad-0.01804$
Call:
$\operatorname{lm}($ formula $=\mathrm{mpg} \sim \mathrm{wt}+\mathrm{cyl}$, data $=$ mtcars)
Coefficients:
(Intercept) wt cyl
$39.686 \quad-3.191 \quad-1.508$

By looking at the R output above, state which case corresponds to the AIC which to the BIC. Explain your reasoning.
(c) Write down the model that corresponds to the R command below.

```
forward_aic <- step(lm(mpg ~ 1, data = mtcars), direction = "forward",
    scope = formula(fit.full), k = 2, trace = 0)
```

(d) In the command above, what does k mean?

Now, consider a new model where variables drat (real axel ratio), wt (weight), gear (number of forward gears), carb (number of carborators) are of interest. In the new model the response variable is $\mathrm{y} 1=1 / \mathrm{y}$, where y is mpg (miles per gallon). The statistician employed a certain model selection procedure and has obtained the following R output.

Start: AIC=-310.25
y1 ~ mtcars\$drat + mtcars\$wt + mtcars\$gear + mtcars\$carb
Df Sum of Sq RSS AIC

- mtcars\$drat 10.000007270 .0014486 -312.09
- mtcars\$gear 10.000047140 .0014884 -311.23
<none> $0.0014413-310.25$
- mtcars\$carb 10.000268620 .0017099 -306.79
- mtcars\$wt 10.000885120 .0023264 -296.93

Step: AIC=-312.09
y1 ~ mtcars\$wt + mtcars\$gear + mtcars\$carb
Df Sum of Sq RSS AIC

- mtcars\$gear 10.000074020 .0015226 -312.50
<none> 0.0014486 -312.09
(C) Queen Mary University of London (2022)

```
- mtcars$carb 1 0.00027151 0.0017201 -308.60
- mtcars$wt 1 0.00108239 0.0025309 -296.24
Step: AIC=-312.5
y1 ~ mtcars$wt + mtcars$carb
Df Sum of Sq RSS AIC
<none> 0.0015226 -312.50
- mtcars$carb 1 0.0002176 0.0017402 -310.22
- mtcars$wt 1 0.0045233 0.0060458 -270.37
```

(e) By looking at the output above, state which procedure the statistician has employed. Describe the procedure. State the reason as to why the procedure stops at the point that it does.
(f) What is multicollinearity? Why is multicollinearity problematic?
(g) We have calculated vif (variance inflation factor). State what conclusion we can draw with respect to collinearity of predictors in the model.

```
> reduced.modely1
Call:
lm(formula = y1 ~ mtcars$wt + mtcars$carb)
Coefficients:
(Intercept) mtcars$wt mtcars$carb
0.005186 0.013657 0.001815
> vif(reduced.modely1)
x2 x4
1.223761 1.223761
```

Question 5 [ $\mathbf{1 5}$ marks]. Below, we see a snippet of a dataset that consists of 128 observations and 15 variables. We present two models describing the linear relationship between the BodyFat and other variables.

```
Density BodyFat Age Weight Height Neck Chest Abdomen Hip Thigh Knee Ankle
    1.0708 12.3 23 154.25 67.75 36.2 93.1 
    1.0853 6.1 22 173.25 72.25 38.5 93.6 监 [1, 83.0
    1.0414 25.3 22 154.00 66.25 34.0
    1.0751 10.4 26 184.75 72.25 37.4 101.8 
    1.0340 28.7 24 184.25 71.25 34.4 97.3 100.0 101.9 63.2 42.2 24.0
    1.0502 20.9 24 210.25 74.75 39.0 104.5 94.4 107.8 66.0 42.0 25.6
Biceps Forearm Wrist
    32.0 27.4 17.1
    30.5 28.9 18.2
    28.8 25.2 16.6
    32.4 29.4 18.2
    32.2 27.7 17.7
    35.7 30.6 18.8
```

(a) By looking at the R output, state whether one should include extra parameters in the model.

```
Analysis of Variance Table
Model 1: x$BodyFat ~ x$Neck
Model 2: x$BodyFat ~ x$Neck + x$Weight + x$Height
Res.Df RSS Df Sum of Sq F Fr (>F)
1 250 13348.1
2 248 9461.4 2 3886.7 50.939< 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**'0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(b) Let us consider just Hip, Forearm and Wrist as our predictors. How many possible linear models that predict BodyFat can one build?
(c) Consider the two models

$$
\begin{equation*}
\text { Salary }=6366+9.3 \text { Age - 329.56 Male }, \quad R^{2}=0.135, \quad \hat{\sigma}^{2}=1099 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\log (\text { Salary })=5.342+0.012 \text { Age }-0.321 \text { Male }, \quad R^{2}=0.178, \quad \hat{\sigma}^{2}=1.231 . \tag{2}
\end{equation*}
$$

(i) Interpret the coefficient for Male in each model.
(ii) Would it be correct to say that the second model is preferred over the first? Explain your reasoning.

Consider another model

$$
\begin{equation*}
\log (\text { Salary })=3.54+0.127 \text { Age }-0.321 \text { Male }, \quad R^{2}=0.880, \quad \hat{\sigma}^{2}=0.757 \tag{3}
\end{equation*}
$$

(iii) Is model (3) better than model (2)? Why?

## End of Paper.

## (C) Queen Mary University of London (2022)

